咨询与建议

限定检索结果

文献类型

  • 1,743 篇 会议
  • 1,588 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 3,332 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,122 篇 工学
    • 1,527 篇 计算机科学与技术...
    • 1,277 篇 软件工程
    • 515 篇 信息与通信工程
    • 297 篇 生物工程
    • 284 篇 控制科学与工程
    • 275 篇 电气工程
    • 165 篇 光学工程
    • 165 篇 电子科学与技术(可...
    • 157 篇 生物医学工程(可授...
    • 137 篇 机械工程
    • 109 篇 化学工程与技术
    • 100 篇 交通运输工程
    • 90 篇 仪器科学与技术
    • 76 篇 动力工程及工程热...
    • 74 篇 土木工程
    • 71 篇 建筑学
    • 68 篇 网络空间安全
  • 1,184 篇 理学
    • 652 篇 数学
    • 336 篇 生物学
    • 239 篇 物理学
    • 206 篇 统计学(可授理学、...
    • 129 篇 化学
    • 96 篇 系统科学
  • 588 篇 管理学
    • 342 篇 管理科学与工程(可...
    • 283 篇 图书情报与档案管...
    • 114 篇 工商管理
  • 149 篇 医学
    • 128 篇 临床医学
    • 101 篇 基础医学(可授医学...
    • 62 篇 药学(可授医学、理...
  • 103 篇 法学
    • 84 篇 社会学
  • 61 篇 农学
  • 44 篇 经济学
  • 39 篇 教育学
  • 6 篇 文学
  • 4 篇 艺术学
  • 3 篇 军事学

主题

  • 138 篇 feature extracti...
  • 132 篇 semantics
  • 117 篇 training
  • 96 篇 deep learning
  • 74 篇 accuracy
  • 73 篇 computational mo...
  • 60 篇 predictive model...
  • 56 篇 contrastive lear...
  • 56 篇 data models
  • 55 篇 machine learning
  • 54 篇 convolution
  • 50 篇 graph neural net...
  • 47 篇 neural networks
  • 44 篇 federated learni...
  • 43 篇 reinforcement le...
  • 42 篇 object detection
  • 42 篇 data mining
  • 39 篇 optimization
  • 38 篇 visualization
  • 37 篇 task analysis

机构

  • 78 篇 beijing advanced...
  • 68 篇 key laboratory o...
  • 63 篇 college of compu...
  • 62 篇 key laboratory o...
  • 61 篇 university of ch...
  • 58 篇 shandong provinc...
  • 58 篇 school of comput...
  • 54 篇 south china univ...
  • 53 篇 national enginee...
  • 52 篇 shandong enginee...
  • 51 篇 peng cheng labor...
  • 46 篇 school of softwa...
  • 43 篇 school of comput...
  • 42 篇 jiangsu key labo...
  • 41 篇 school of cyber ...
  • 40 篇 school of electr...
  • 36 篇 key laboratory o...
  • 36 篇 guangdong key la...
  • 36 篇 jiangsu key labo...
  • 35 篇 hunan provincial...

作者

  • 39 篇 wang guoyin
  • 38 篇 xu xiaolong
  • 35 篇 tan mingkui
  • 30 篇 jin hai
  • 27 篇 xiaolong xu
  • 26 篇 huang qingming
  • 25 篇 shen linlin
  • 22 篇 hai jin
  • 21 篇 guo wenzhong
  • 21 篇 xu qianqian
  • 20 篇 hu shengshan
  • 20 篇 hongyan ma
  • 19 篇 chen huajun
  • 18 篇 niyato dusit
  • 17 篇 xia shuyin
  • 17 篇 wu di
  • 16 篇 li jianxin
  • 16 篇 guo kun
  • 15 篇 peng hao
  • 15 篇 chen gang

语言

  • 2,798 篇 英文
  • 497 篇 其他
  • 66 篇 中文
  • 2 篇 葡萄牙文
  • 1 篇 荷兰文
检索条件"机构=Key Laboratory of Big Data Intelligent Computing "
3332 条 记 录,以下是1321-1330 订阅
排序:
FuzzyTrack: User Adaptive Cervical Spine Motion Prediction with Earable Inertial Sensing
收藏 引用
IEEE Transactions on Fuzzy Systems 2024年
作者: Luo, Chengwen Li, Yaxue Chen, Gecheng Li, Xing Zhang, Jin Wei, Bo Li, Jianqiang Shenzhen University National Engineering Laboratory for Big Data System Computing Technology China Dongguan University of Technology School of Electrical Engineering & Intelligentization Guangdong Dongguan523808 China Northeastern University China State Key Laboratory of Synthetical Automation for Process Industries Liaoning Shenyang110819 China Newcastle University United Kingdom
The widespread use of electronic devices has contributed to an increase in poor posture, particularly when it comes to the cervical spine, leading to various cervical vertebral pain disorders. In this paper, we focus ... 详细信息
来源: 评论
SAV-SE: Scene-aware Audio-Visual Speech Enhancement with Selective State Space Model
arXiv
收藏 引用
arXiv 2024年
作者: Qian, Xinyuan Gao, Jiaran Zhang, Yaodan Zhang, Qiquan Liu, Hexin Garcia, Leibny Paola Li, Haizhou The School of Computer and Communication Engineering University of Science and Technology Beijing Beijing100083 China The School of Electrical Engineering and Telecommunications The University of New South Wales Sydney2052 Australia The College of Computing and Data Science Nanyang Technological University Singapore The Center for Language and Speech Processing Johns Hopkins University United States The Guangdong Provincial Key Laboratory of Big Data Computing The Chinese University of Hong Kong Shenzhen518172 China Shenzhen Research Institute of Big data Shenzhen51872 China
Speech enhancement plays an essential role in various applications, and the integration of visual information has been demonstrated to bring substantial advantages. However, the majority of current research concentrat... 详细信息
来源: 评论
A Non-Parametric Scheme for Identifying data Characteristic Based on Curve Similarity Matching
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2024年 第6期11卷 1424-1437页
作者: Quanbo Ge Yang Cheng Hong Li Ziyi Ye Yi Zhu Gang Yao School of Automation Nanjing University of Information Science&TechnologyJiangsu Provincial University Key Laboratory of Big Data Analysis and Intelligent SystemsNanjing University of Information Science&Technologyand the Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology(CICAEET)Nanjing University of Information Science&TechnologyNanjing 210044China School of Department of Logistics Engineering Shanghai Maritime UniversityShanghai 201306China China Classification Society Nantong Office Nantong 226006China Chinese Flight Test Establishment Xi’an 710089China School of Mathematics Tsinghua UniversityBeijing 100084China School of Automation Nanjing University of Information Science&TechnologyNanjing 210044China Department of Logistics Engineering Shanghai Maritime UniversityShanghai 201306China IEEE
For accurately identifying the distribution charac-teristic of Gaussian-like noises in unmanned aerial vehicle(UAV)state estimation,this paper proposes a non-parametric scheme based on curve similarity *** the framewo... 详细信息
来源: 评论
Gradient Boosting-Accelerated Evolution for Multiple-Fault Diagnosis
Gradient Boosting-Accelerated Evolution for Multiple-Fault D...
收藏 引用
Design, Automation and Test in Europe Conference and Exhibition
作者: Hongfei Wang Chenliang Luo Deqing Zou Hai Jin Wenjie Cai National Engineering Research Center for Big Data Technology and System Services Computing Technology and System Lab Wuhan China Hubei Engineering Research Center on Big Data Security Hubei Key Laboratory of Distributed System Security School of Cyber Science and Engineering Wuhan China Huazhong University of Science and Technology Wuhan China Cluster and Grid Computing Lab School of Computer Science and Technology Wuhan China College of Public Administration Wuhan China
Logic diagnosis is a key step in yield learning. Multiple faults diagnosis is challenging because of several reasons, including error masking, fault reinforcement, and huge search space for possible fault combinations... 详细信息
来源: 评论
Efficient Meta Neural Heuristic for Multi-Objective Combinatorial Optimization
arXiv
收藏 引用
arXiv 2023年
作者: Chen, Jinbiao Wang, Jiahai Zhang, Zizhen Cao, Zhiguang Ye, Te Chen, Siyuan School of Computer Science and Engineering Sun Yat-sen University China Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education Sun Yat-sen University China Guangdong Key Laboratory of Big Data Analysis and Processing Guangzhou China School of Computing and Information Systems Singapore Management University Singapore
Recently, neural heuristics based on deep reinforcement learning have exhibited promise in solving multi-objective combinatorial optimization problems (MOCOPs). However, they are still struggling to achieve high learn... 详细信息
来源: 评论
A Bandpass Filter with Switch Function Based on Slotline Resonator and PIN Diode
A Bandpass Filter with Switch Function Based on Slotline Res...
收藏 引用
Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSRWTC)
作者: Bingjie Yang Zhongbao Wang Shipeng Zhao Hongmei Liu School of Information Science and Technology Dalian Maritime University Dalian Liaoning China Liaoning Key Laboratory of Radio Frequency and Big Data for Intelligent Applications Liaoning Technical University Huludao Liaoning China
A novel bandpass filter (BPF) with the switch function is proposed. It consists of three slotline step-impedance resonators, two L-shaped feed lines, and three microstrip bridges. The microstrip bridge is loaded with ...
来源: 评论
Pyramid Convolution and Multi-Frequency Spatial Attention for Fine-Grained Visual Categorization
SSRN
收藏 引用
SSRN 2022年
作者: Xu, Qin Li, Yun Zhang, Mengquan Tao, Zhifu Luo, Bin Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education School of Computer Science and Technology Anhui University Hefei230601 China School of Big Data and Statistics Anhui University Hefei230601 China
Learning diverse detailed feature is crucial for fine-grained visual categorization (FGVC). However, most of existing methods for FGVC use the standard convolution for feature extraction which leads to the loss of man... 详细信息
来源: 评论
Dlr: Adversarial Examples Detection and Label Recovery for Deep Neural Networks
SSRN
收藏 引用
SSRN 2024年
作者: Han, Keji Li, Yun Ge, Yao Wang, Ruchuan Nanjing University of Posts and Telecommunications Wenyuan Road 9 Nanjing210046 China Jiangsu Key Laboratory of Big Data Security & Intelligent Processing Wenyuan Road 9 Nanjing210046 China Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks Wenyuan Road 9 Nanjing210046 China
Deep neural networks (DNNs) are demonstrated to be vulnerable to the adversarial example crafted by the adversary to fool the target model. Adversarial training and adversarial example detection are two popular method... 详细信息
来源: 评论
Label Distribution Learning with Correlation Information
SSRN
收藏 引用
SSRN 2024年
作者: Wu, Yilin Lin, Yaojin Guo, Wenzhong Ding, Weiping College of Computer and Data Science Fuzhou University Fuzhou350116 China Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350116 China Key Laboratory of Data Science and Intelligence Application Minnan Normal University Zhangzhou363000 China School of Information Science and Technology Nantong University Nantong226019 China
Label distribution learning quantifies the label space for each instance and has widely applicability in different fields. However, most existing works primarily focus on label correlation, but they still have a limit... 详细信息
来源: 评论
Dual attention mechanism object tracking algorithm based on Fully-convolutional Siamese network
Dual attention mechanism object tracking algorithm based on ...
收藏 引用
2021 International Conference on Networking and Network Applications, NaNA 2021
作者: Ma, Sugang Zhang, Zixian Zhang, Lei Chen, Yanping Yang, Xiaobao Pu, Lei Hou, Zhiqiang Xi'an University of Posts and Telecommunications School of Computer Science and Technology Shaanxi Xi'an710121 China Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing Xi'an Key Laboratory of Big Data and Intelligent Computing Xi'an University of Posts and Telecommunications Shaanxi Xi'an710121 China School of Information and Navigation Air Force Engineering University Shaanxi Xi'an710077 China School of Information Engineering Chang'an University Shaanxi Xi'an710064 China
In an effort to the problem of insufficient tracking performance of the Fully-convolutional Siamese network (SiamFC) in complex scenarios, a dual attention mechanism object tracking algorithm based on the Fully-convol... 详细信息
来源: 评论