咨询与建议

限定检索结果

文献类型

  • 1,659 篇 会议
  • 1,591 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 3,251 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,080 篇 工学
    • 1,491 篇 计算机科学与技术...
    • 1,259 篇 软件工程
    • 503 篇 信息与通信工程
    • 293 篇 生物工程
    • 277 篇 电气工程
    • 269 篇 控制科学与工程
    • 165 篇 电子科学与技术(可...
    • 159 篇 光学工程
    • 156 篇 生物医学工程(可授...
    • 139 篇 机械工程
    • 111 篇 化学工程与技术
    • 101 篇 交通运输工程
    • 88 篇 仪器科学与技术
    • 75 篇 动力工程及工程热...
    • 68 篇 土木工程
    • 67 篇 网络空间安全
    • 65 篇 建筑学
  • 1,156 篇 理学
    • 628 篇 数学
    • 331 篇 生物学
    • 235 篇 物理学
    • 200 篇 统计学(可授理学、...
    • 129 篇 化学
    • 96 篇 系统科学
  • 581 篇 管理学
    • 339 篇 管理科学与工程(可...
    • 278 篇 图书情报与档案管...
    • 111 篇 工商管理
  • 151 篇 医学
    • 129 篇 临床医学
    • 99 篇 基础医学(可授医学...
    • 62 篇 药学(可授医学、理...
  • 102 篇 法学
    • 83 篇 社会学
  • 63 篇 农学
  • 46 篇 经济学
  • 38 篇 教育学
  • 6 篇 文学
  • 4 篇 艺术学
  • 3 篇 军事学

主题

  • 133 篇 feature extracti...
  • 129 篇 semantics
  • 116 篇 training
  • 96 篇 deep learning
  • 69 篇 computational mo...
  • 63 篇 accuracy
  • 60 篇 predictive model...
  • 56 篇 machine learning
  • 56 篇 data models
  • 52 篇 convolution
  • 49 篇 neural networks
  • 49 篇 graph neural net...
  • 45 篇 contrastive lear...
  • 43 篇 object detection
  • 43 篇 data mining
  • 41 篇 reinforcement le...
  • 38 篇 task analysis
  • 36 篇 optimization
  • 36 篇 visualization
  • 36 篇 federated learni...

机构

  • 77 篇 beijing advanced...
  • 68 篇 key laboratory o...
  • 63 篇 college of compu...
  • 58 篇 shandong provinc...
  • 58 篇 school of comput...
  • 54 篇 university of ch...
  • 52 篇 south china univ...
  • 51 篇 key laboratory o...
  • 50 篇 peng cheng labor...
  • 46 篇 shandong enginee...
  • 44 篇 school of softwa...
  • 44 篇 national enginee...
  • 41 篇 school of comput...
  • 40 篇 school of electr...
  • 39 篇 jiangsu key labo...
  • 39 篇 school of cyber ...
  • 36 篇 jiangsu key labo...
  • 35 篇 hunan provincial...
  • 34 篇 guangdong key la...
  • 33 篇 chongqing key la...

作者

  • 38 篇 xu xiaolong
  • 35 篇 wang guoyin
  • 35 篇 tan mingkui
  • 29 篇 jin hai
  • 25 篇 huang qingming
  • 25 篇 xiaolong xu
  • 22 篇 hai jin
  • 21 篇 chen yanping
  • 21 篇 guo wenzhong
  • 21 篇 xu qianqian
  • 20 篇 shen linlin
  • 20 篇 hongyan ma
  • 18 篇 hu shengshan
  • 18 篇 wu di
  • 17 篇 guo kun
  • 16 篇 niyato dusit
  • 16 篇 chen huajun
  • 16 篇 li jianxin
  • 15 篇 xia shuyin
  • 15 篇 chen gang

语言

  • 3,047 篇 英文
  • 169 篇 其他
  • 52 篇 中文
  • 2 篇 葡萄牙文
  • 1 篇 荷兰文
检索条件"机构=Key Laboratory of Big Data Intelligent Computing "
3251 条 记 录,以下是241-250 订阅
排序:
Last-X-Generation Archiving Strategy for Multi-Objective Evolutionary Algorithms  13
Last-X-Generation Archiving Strategy for Multi-Objective Evo...
收藏 引用
13th IEEE Congress on Evolutionary Computation, CEC 2024
作者: Shu, Tianye Nan, Yang Shang, Ke Ishibuchi, Hisao Southern University of Science and Technology Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation Department of Computer Science and Engineering Shenzhen518055 China Southern University of Science and Technology Shenzhen518055 China Shenzhen University National Engineering Laboratory for Big Data System Computing Technology Shenzhen518060 China
For evolutionary multi-objective optimization algorithms (EMOAs), an external archive can be utilized for saving good solutions found throughout the evolutionary process. Recent studies showed that a solution set sele... 详细信息
来源: 评论
QoS Prediction based on the Low-rank Autoregressive Tensor Completion
QoS Prediction based on the Low-rank Autoregressive Tensor C...
收藏 引用
2022 International Conference on Networking and Network Applications, NaNA 2022
作者: Xia, Hong Dong, Qingyi Chen, Yanping Zheng, Jiahao Gao, Cong Wang, ZhongMin School of Computer Science and Technology Xi’an University of Posts and Telecommunications Shaanxi Xi’an710121 China Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing Shaanxi Xi’an710121 China Xi'an Key Laboratory of Big Data and Intelligent Computing Shaanxi Xi’an710121 China
With the rapid development of network services and edge computing, Quality of Service (QoS) has become an important indicator to validate performances of a network. Recommend high-quality services to users based on Qo... 详细信息
来源: 评论
AtM-DNN: A Multimodal Attention Fusion Network with Auxiliary Function for Sentiment Classification  25
AtM-DNN: A Multimodal Attention Fusion Network with Auxiliar...
收藏 引用
25th IEEE International Conference on Computer Supported Cooperative Work in Design, CSCWD 2022
作者: Huang, Ji Xu, Xiaolong Nanjing University of Posts and Telecommunications Jiangsu Key Laboratory of Big Data Security and Intelligent Processing Nanjing China
Multimodal sentiment classification is an important research attracting many scientists' attention in natural language processing. In most multimodal sentiment research, each modal of the dataset is labeled with a... 详细信息
来源: 评论
Entity disambiguation method based on Graph Attention Networks  14
Entity disambiguation method based on Graph Attention Networ...
收藏 引用
14th International Conference on Measuring Technology and Mechatronics Automation, ICMTMA 2022
作者: Qiang, Chengyu Li, Xiaogo Ma, Xianyan Han, Wei Yao, Yi School of Computer Science and Technology Xi'an University of Posts and Telecommunications Shaanxi Xi'an71012 China Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing Shaanxi Xi'an710121 China Xi 'an Key Laboratory of Big Data and Intelligent Computing Shaanxi Xi'an710121 China
Entity disambiguation based on entity-link is a technique which constructs the mappings between entity reference items appearing in the short text and target entity in knowledge base respectively. In this paper we pro... 详细信息
来源: 评论
Efficient Homomorphic Approximation of Max Pooling for Privacy-Preserving Deep Learning  6th
Efficient Homomorphic Approximation of Max Pooling for Pri...
收藏 引用
6th International Conference on Machine Learning for Cyber Security, ML4CS 2024
作者: Zhang, Peng Qiu, Dongyan Duan, Ao Liu, Hongwei The Guangdong Key Laboratory of Intelligent Information Processing College of Electronics and Information Engineering Shenzhen University Guangdong Shenzhen518060 China College of Big Data and Internet Shenzhen Technology University Guangdong Shenzhen518118 China
Privacy-Preserving Deep Learning (PPDL) using Fully Homomorphic Encryption (FHE) addresses potential data privacy exposure risks associated with deploying deep learning models in untrusted cloud environments. FHE-base... 详细信息
来源: 评论
Research on Metaverse Multi-person Linkage Using Mobile Edge computing Based on Extended Reality Under the Immersive Experience of Zhijiang Peace Culture Memorial Hall  16th
Research on Metaverse Multi-person Linkage Using Mobile Edge...
收藏 引用
16th EAI International Conference on Wireless Internet, WiCON 2023
作者: Liu, Yiwen Fu, Jinrong Yan, Haobo Gao, Yanxia Peng, Ling Qu, Taiguo School of Computer and Artificial Intelligence Huaihua University Huaihua418000 China Key Laboratory of Wuling-Mountain Health Big Data Intelligent Processing and Application in Hunan Province Universities Huaihua418000 China Key Laboratory of Intelligent Control Technology for Wuling-Mountain Ecological Agriculture in Hunan Province Huaihua418000 China
This study aims to deeply explore the impact of mobile edge computing based on extended reality technology on the multi-person linkage of the Zhijiang Peace Culture Memorial Hall under the immersive experience. In the... 详细信息
来源: 评论
An Extended-Isomap for high-dimensional data accuracy and efficiency: a comprehensive survey
收藏 引用
Multimedia Tools and Applications 2024年 第38期83卷 85523-85574页
作者: Yousaf, Mahwish Shakoor Khan, Muhammad Saadat Ullah, Shamsher Institute of Intelligence Machine Hefei Institutes of Physical Science Chinese Academy of Sciences Anhui Hefei230027 China Key Laboratory of Materials Physics Institute of Solid-State Physics Chinese Academy of Sciences Anhui Hefei230027 China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Guangdong Shenzhen518060 China
Manifold learning is a widely adopted nonlinear dimensionality reduction technique employed to discover low-dimensional representations from high-dimensional data and to explore the intrinsic data structure. It encomp... 详细信息
来源: 评论
SRv6-INT Enabled Network Monitoring and Measurement: Toward High-Yield Network Observability for Digital Twin  3rd
SRv6-INT Enabled Network Monitoring and Measurement: Toward...
收藏 引用
3rd International Conference on Machine Learning, Cloud computing and intelligent Mining, MLCCIM 2024
作者: Zhang, Xu Feng, Chuan Han, Pengchao Liu, Wei Gong, Xiaoxue Zhang, Qiupei Guo, Lei School of Communications and Information Engineering Chongqing University of Posts and Telecommunications Chongqing400065 China Institute of Intelligent Communication and Network Security Chongqing University of Posts and Telecommunications Chongqing400065 China Key Laboratory of Big Data Intelligent Computing Chongqing University of Posts and Telecommunications Chongqing400065 China School of Information Engineering Guangdong University of Technology Guangzhou510006 China
Network monitoring and measurement is an important part of realizing the network digital twin. However, it introduces the problem of high cost when obtaining the status data of physical networks. Therefore, to efficie... 详细信息
来源: 评论
User Information Enhanced Knowledge Graph Convolutional Networks for Recommender Systems  14
User Information Enhanced Knowledge Graph Convolutional Netw...
收藏 引用
14th International Conference on Measuring Technology and Mechatronics Automation, ICMTMA 2022
作者: Hao, Junyu Li, Xiaoge School of Computer Science and Technology Xi'an University of Posts and Telecommunications Shaanxi Xi'an71012 China Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing Shaanxi Xi'an710121 China Xi'an Key laboratory of Big Data and Intelligent Computing Shaanxi Xi'an710121 China
To deeply excavate the information contained in user data and better alleviate cold start problem, we propose KGCN++, a user information enhanced knowledge graph convolutional networks model for recommender system, wh... 详细信息
来源: 评论
Generalized Self-Adaption Network for Domain Adaptation  2
Generalized Self-Adaption Network for Domain Adaptation
收藏 引用
2nd International Conference on Artificial Intelligence and intelligent Information Processing, AIIIP 2023
作者: Bian, Yongheng Ke, Xiao College of Computer and Data Science Fuzhou University Fujian Provincial Key Laboratory of Networking Computing and Intelligent Information Processing Fuzhou350116 China Key Laboratory of Spatial Data Mining & Information Sharing Ministry of Education Fuzhou350003 China
The purpose of domain adaptation is to transfer knowledge learned in the labeled source domain to unlabeled but related target domains without requiring a large number of target domain labels. The latest method of dom... 详细信息
来源: 评论