咨询与建议

限定检索结果

文献类型

  • 1,216 篇 会议
  • 1,132 篇 期刊文献

馆藏范围

  • 2,348 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,605 篇 工学
    • 1,148 篇 计算机科学与技术...
    • 780 篇 软件工程
    • 342 篇 信息与通信工程
    • 294 篇 电气工程
    • 210 篇 控制科学与工程
    • 175 篇 生物工程
    • 107 篇 光学工程
    • 101 篇 电子科学与技术(可...
    • 99 篇 生物医学工程(可授...
    • 89 篇 机械工程
    • 75 篇 化学工程与技术
    • 71 篇 仪器科学与技术
    • 59 篇 交通运输工程
    • 54 篇 土木工程
    • 52 篇 动力工程及工程热...
    • 48 篇 建筑学
    • 47 篇 网络空间安全
  • 735 篇 理学
    • 395 篇 数学
    • 199 篇 生物学
    • 178 篇 物理学
    • 119 篇 统计学(可授理学、...
    • 95 篇 化学
    • 56 篇 系统科学
  • 382 篇 管理学
    • 234 篇 管理科学与工程(可...
    • 166 篇 图书情报与档案管...
    • 77 篇 工商管理
  • 135 篇 医学
    • 113 篇 临床医学
    • 76 篇 基础医学(可授医学...
  • 57 篇 法学
    • 43 篇 社会学
  • 43 篇 教育学
    • 40 篇 教育学
  • 43 篇 农学
  • 29 篇 经济学
  • 17 篇 文学
  • 3 篇 军事学
  • 3 篇 艺术学

主题

  • 108 篇 feature extracti...
  • 90 篇 training
  • 88 篇 semantics
  • 84 篇 deep learning
  • 56 篇 computational mo...
  • 52 篇 predictive model...
  • 48 篇 data models
  • 47 篇 task analysis
  • 45 篇 accuracy
  • 42 篇 convolution
  • 40 篇 contrastive lear...
  • 39 篇 visualization
  • 37 篇 object detection
  • 36 篇 neural networks
  • 30 篇 machine learning
  • 29 篇 convolutional ne...
  • 27 篇 reinforcement le...
  • 26 篇 graph neural net...
  • 25 篇 image segmentati...
  • 25 篇 speech processin...

机构

  • 132 篇 south china univ...
  • 69 篇 key laboratory o...
  • 69 篇 minist educ key ...
  • 54 篇 south china univ...
  • 54 篇 south china univ...
  • 54 篇 school of comput...
  • 51 篇 pazhou lab peopl...
  • 47 篇 school of softwa...
  • 42 篇 jiangsu key labo...
  • 41 篇 south china univ...
  • 40 篇 south china univ...
  • 39 篇 school of electr...
  • 39 篇 national enginee...
  • 36 篇 hong kong polyte...
  • 36 篇 key laboratory o...
  • 36 篇 jiangsu key labo...
  • 35 篇 hunan provincial...
  • 35 篇 chongqing key la...
  • 32 篇 peng cheng labor...
  • 32 篇 key laboratory o...

作者

  • 98 篇 cai yi
  • 82 篇 tan mingkui
  • 48 篇 wu qingyao
  • 44 篇 shen linlin
  • 43 篇 li qing
  • 38 篇 wang guoyin
  • 38 篇 xu xiaolong
  • 29 篇 xiaolong xu
  • 28 篇 xu xuemiao
  • 26 篇 huang qingbao
  • 24 篇 zhou zhiheng
  • 24 篇 huang qingming
  • 22 篇 xu qianqian
  • 21 篇 xie jiayuan
  • 20 篇 hongyan ma
  • 19 篇 chen huajun
  • 18 篇 ren haopeng
  • 18 篇 niu shuaicheng
  • 17 篇 wang tao
  • 17 篇 liu yiwen

语言

  • 2,015 篇 英文
  • 308 篇 其他
  • 43 篇 中文
  • 2 篇 葡萄牙文
  • 1 篇 荷兰文
检索条件"机构=Key Laboratory of Big Data and Intelligent Robot "
2348 条 记 录,以下是1661-1670 订阅
排序:
Resilient Collaborative Caching for Multi-Edge Systems with Robust Federated Deep Learning
收藏 引用
IEEE/ACM Transactions on Networking 2024年
作者: Chen, Zheyi Liang, Jie Yu, Zhengxin Cheng, Hongju Min, Geyong Li, Jie Fuzhou University College of Computer and Data Science Fujian Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou350116 China Ministry of Education Engineering Research Center of Big Data Intelligence Fuzhou350002 China Lancaster University School of Computing and Communications LancasterLA1 4YW United Kingdom University of Exeter Faculty of Environment Science and Economy Department of Computer Science ExeterEX4 4QF United Kingdom Shanghai Jiao Tong University Department of Computer Science and Engineering Shanghai200240 China
As a key technique for future networks, the performance of emerging multi-edge caching is often limited by inefficient collaboration among edge nodes and improper resource configuration. Meanwhile, achieving optimal c... 详细信息
来源: 评论
6D Movable Antenna Enhanced Interference Mitigation for Cellular-Connected UAV Communications
arXiv
收藏 引用
arXiv 2024年
作者: Ren, Tianshi Zhang, Xianchao Zhu, Lipeng Ma, Wenyan Gao, Xiaozheng Zhang, Rui School of Information and Electronics Beijing Institute of Technology Beijing100081 China Department of Electrical and Computer Engineering National University of Singapore Singapore117583 Singapore Provincial Key Laboratory of Multimodal Perceiving and Intelligent Systems Jiaxing University Jiaxing314001 China Engineering Research Center of Intelligent Human Health Situation Awareness of Zhejiang Province Jiaxing University Jiaxing314001 China School of Science and Engineering Shenzhen Research Institute of Big Data The Chinese University of Hong Kong Guangdong Shenzhen518172 China
Cellular-connected unmanned aerial vehicle (UAV) communications is an enabling technology to transmit control signaling or payload data for UAVs through cellular networks. Due to the line-of-sight (LoS) dominant air-t... 详细信息
来源: 评论
IMPACT: Importance-Informed Prefetching and Caching for I/O-Bound DNN Training
收藏 引用
IEEE Transactions on Computers 2025年
作者: Chen, Weijian He, Shuibing Zhang, Ruidong Zhang, Xuechen Chen, Ping Yang, Siling Qu, Haoyang Zhan, Xuan Zhejiang University State Key Laboratory of Blockchain and Data Security China Institute of Blockchain and Data Security Hangzhou China Zhejiang Key Laboratory of Big Data Intelligent Computing China Washington State University Vancouver School of Engineering and Computer Science VancouverWA98686 United States
Fetching large amounts of DNN training data from storage systems causes high I/O latency and GPU stalls. Importance sampling can reduce data processing on GPUs while maintaining model accuracy, but current frameworks ... 详细信息
来源: 评论
Contrastive Generative Network with Recursive-Loop for 3D point cloud generalized zero-shot classification
收藏 引用
PATTERN RECOGNITION 2023年 第1期144卷
作者: Hao, Yun Su, Yukun Lin, Guosheng Su, Hanjing Wu, Qingyao South China Univ Technol Sch Software Engn Guangzhou Peoples R China Minist Educ Key Lab Big Data & Intelligent Robot Guangzhou Peoples R China Nanyang Technol Univ Singapore Singapore Pazhou Lab Guangzhou Peoples R China Peng Cheng Lab Shenzhen Peoples R China Tencent Tencent Wechat Dept Guangzhou Peoples R China South China Univ Technol Guangzhou Higher Educ MegaCtr 382 Zhonghuan Rd East Guangzhou 510006 Peoples R China
Generalized Zero-Shot Learning (GZSL) aims to recognize objects from both seen and unseen categories by transferring semantic knowledge and merely utilizing seen class data for training. Recent feature generation meth... 详细信息
来源: 评论
Learning Semantic Context from Normal Samples for Unsupervised Anomaly Detection  35
Learning Semantic Context from Normal Samples for Unsupervis...
收藏 引用
35th AAAI Conference on Artificial Intelligence / 33rd Conference on Innovative Applications of Artificial Intelligence / 11th Symposium on Educational Advances in Artificial Intelligence
作者: Yan, Xudong Zhang, Huaidong Xu, Xuemiao Hu, Xiaowei Heng, Pheng-Ann South China Univ Technol Guangzhou Peoples R China Minist Educ Key Lab Big Data & Intelligent Robot Beijing Peoples R China Guangdong Prov Key Lab Computat Intelligence & Cy Guangzhou Peoples R China State Key Lab Subtrop Bldg Sci Guangzhou Peoples R China Chinese Univ Hong Kong Hong Kong Peoples R China Chinese Acad Sci Shenzhen Inst Adv Technol Shenzhen Key Lab Virtual Real & Human Interact Te Shenzhen Peoples R China
Unsupervised anomaly detection aims to identify data samples that have low probability density from a set of input samples, and only the normal samples are provided for model training The inference of abnormal regions... 详细信息
来源: 评论
Towards Feature Distribution Alignment and Diversity Enhancement for data-Free Quantization
Towards Feature Distribution Alignment and Diversity Enhance...
收藏 引用
IEEE International Conference on data Mining (ICDM)
作者: Yangcheng Gao Zhao Zhang Richang Hong Haijun Zhang Jicong Fan Shuicheng Yan School of Computer Science and Information Engineering Hefei University of Technology Hefei China Key Laboratory of Knowledge Engineering with Big Data (Ministry of Education) & Intelligent Interconnected Systems Laboratory of Anhui Province Hefei University of Technology Hefei China Department of Computer Science Harbin Institute of Technology (Shenzhen) Xili University Town Shenzhen China School of Data Science The Chinese University of Hong Kong Shenzhen China Shenzhen Research Institute of Big Data Shenzhen China National University of Singapore Singapore
To obtain lower inference latency and less memory footprint of deep neural networks, model quantization has been widely employed in deep model deployment, by converting the floating points to low-precision integers. H... 详细信息
来源: 评论
Towards High-resolution 3D Anomaly Detection via Group-Level Feature Contrastive Learning
arXiv
收藏 引用
arXiv 2024年
作者: Zhu, Hongze Xie, Guoyang Hou, Chengbin Dai, Tao Gao, Can Wang, Jinbao Shen, Linlin National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen China Department of Computer Science City University of Hong Kong Hong Kong Department of Intelligent Manufacturing CATL Ningde China Fuzhou Fuyao Institute for Advanced Study Fuyao University of Science and Technology Fuzhou China College of Computer Science and Software Engineering Shenzhen University Shenzhen China Guangdong Provincial Key Laboratory of Intelligent Information Processing Shenzhen China Shenzhen University Shenzhen China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China
High-resolution point clouds (HRPCD) anomaly detection (AD) plays a critical role in precision machining and high-end equipment manufacturing. Despite considerable 3D-AD methods that have been proposed recently, they ... 详细信息
来源: 评论
data-driven Industrial robot Arm Calibration: A Machine Learning Perspective  18
Data-driven Industrial Robot Arm Calibration: A Machine Lear...
收藏 引用
18th IEEE International Conference on Networking, Sensing and Control, ICNSC 2021
作者: Li, Zhibin Li, Shuai Luo, Xin University of Chinese Academy of Sciences School of Computer Science and Technology Chongqing University of Posts and Telecommunications Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing School Chongqing China Swansea University Department of Electronics and Electrical Engineering Swansea United Kingdom University of Chinese Academy of Sciences Chongqing Key Laboratory of Big Data and Intelligent Computing Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing School Chongqing China
robot arms have been widely used in industry. The absolute positioning error of robots without calibration can reach several millimeters, which cannot meet the application requirements of accurate operation. Therefore... 详细信息
来源: 评论
Digital Mahjong System: Towards Precise Cognitive Assessment with IoT Technologies  1
收藏 引用
24th International Conference on Human-Computer Interaction, HCII 2022
作者: An, Ning Hu, Enze Guo, Yanrui Yang, Jiaoyun Au, Rhoda Ding, Huitong School of Computer Science and Information Engineering Hefei University of Technology Hefei China Anhui Province Key Laboratory of Affective Computing and Advanced Intelligent Machine Hefei University of Technology Hefei China National Smart Eldercare International S&T Cooperation Base Hefei University of Technology Hefei China Intelligent Interconnected Systems Laboratory of Anhui Province Hefei University of Technology Hefei China Shenzhen Corecloud Innovation Technology Co. Ltd. Shenzhen China Key Laboratory of Knowledge Engineering with Big Data of Ministry of Education Hefei University of Technology Hefei China Department of Anatomy and Neurobiology Neurology and Framingham Heart Study Boston University School of Medicine Boston United States Department of Epidemiology Boston University School of Public Health Boston United States
To the best of our knowledge, this paper is the first to apply IoT technologies to transform the popular Mahjong game into a Digital Mahjong System (DMS) for digitally performing cognitive assessments. People have sta... 详细信息
来源: 评论
Variable-Frequency Phase Unwrapping for High-Speed 3-D Shape Measurement
收藏 引用
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 2024年 73卷 1-1页
作者: Zeng, Jinghui Li, Yucheng Xu, Chen Li, Shutao Tan, Mingkui South China Univ Technol Shien Ming Wu Sch Intelligent Engn Guangzhou 511442 Peoples R China South China Univ Technol Sch Software Engn Guangzhou Peoples R China Hunan Univ Coll Elect & Informat Engn Changsha 410082 Peoples R China Dongguan New Generat Artificial Intelligence Techn Dongguan 523000 Peoples R China Hunan Univ Greater Bay Area Inst Innovat Guangzhou 511300 Peoples R China South China Univ Technol Sch Software Engn Minist Educ Guangzhou 510006 Peoples R China South China Univ Technol Key Lab Big Data & Intelligent Robot Minist Educ Guangzhou 510006 Peoples R China
Phase unwrapping plays a critical role in digital fringe projection (DFP) 3-D measurements. The phase unwrapping methods based on geometric constraints require no additional patterns, achieving superior efficiency and... 详细信息
来源: 评论