咨询与建议

限定检索结果

文献类型

  • 1,211 篇 会议
  • 1,135 篇 期刊文献

馆藏范围

  • 2,346 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,622 篇 工学
    • 1,153 篇 计算机科学与技术...
    • 787 篇 软件工程
    • 342 篇 信息与通信工程
    • 301 篇 电气工程
    • 213 篇 控制科学与工程
    • 176 篇 生物工程
    • 108 篇 光学工程
    • 103 篇 电子科学与技术(可...
    • 101 篇 生物医学工程(可授...
    • 91 篇 机械工程
    • 76 篇 化学工程与技术
    • 71 篇 仪器科学与技术
    • 59 篇 交通运输工程
    • 55 篇 土木工程
    • 52 篇 动力工程及工程热...
    • 49 篇 建筑学
    • 46 篇 网络空间安全
  • 740 篇 理学
    • 392 篇 数学
    • 201 篇 生物学
    • 181 篇 物理学
    • 118 篇 统计学(可授理学、...
    • 95 篇 化学
    • 56 篇 系统科学
  • 388 篇 管理学
    • 240 篇 管理科学与工程(可...
    • 166 篇 图书情报与档案管...
    • 77 篇 工商管理
  • 136 篇 医学
    • 113 篇 临床医学
    • 77 篇 基础医学(可授医学...
  • 57 篇 法学
    • 43 篇 社会学
  • 44 篇 教育学
    • 41 篇 教育学
  • 44 篇 农学
  • 29 篇 经济学
  • 17 篇 文学
  • 3 篇 军事学
  • 3 篇 艺术学

主题

  • 108 篇 feature extracti...
  • 90 篇 training
  • 89 篇 semantics
  • 84 篇 deep learning
  • 55 篇 computational mo...
  • 52 篇 predictive model...
  • 48 篇 data models
  • 47 篇 task analysis
  • 42 篇 convolution
  • 41 篇 accuracy
  • 39 篇 contrastive lear...
  • 39 篇 visualization
  • 38 篇 object detection
  • 37 篇 neural networks
  • 31 篇 machine learning
  • 30 篇 convolutional ne...
  • 28 篇 graph neural net...
  • 27 篇 reinforcement le...
  • 25 篇 image segmentati...
  • 25 篇 speech processin...

机构

  • 133 篇 south china univ...
  • 69 篇 key laboratory o...
  • 69 篇 minist educ key ...
  • 55 篇 south china univ...
  • 54 篇 south china univ...
  • 54 篇 school of comput...
  • 51 篇 pazhou lab peopl...
  • 45 篇 school of softwa...
  • 41 篇 south china univ...
  • 40 篇 south china univ...
  • 39 篇 jiangsu key labo...
  • 39 篇 school of electr...
  • 39 篇 national enginee...
  • 36 篇 hong kong polyte...
  • 36 篇 key laboratory o...
  • 36 篇 jiangsu key labo...
  • 35 篇 hunan provincial...
  • 35 篇 chongqing key la...
  • 32 篇 peng cheng labor...
  • 32 篇 key laboratory o...

作者

  • 99 篇 cai yi
  • 82 篇 tan mingkui
  • 48 篇 wu qingyao
  • 43 篇 shen linlin
  • 43 篇 li qing
  • 41 篇 wang guoyin
  • 38 篇 xu xiaolong
  • 28 篇 xu xuemiao
  • 27 篇 xiaolong xu
  • 26 篇 huang qingbao
  • 24 篇 zhou zhiheng
  • 24 篇 huang qingming
  • 22 篇 xu qianqian
  • 21 篇 xie jiayuan
  • 20 篇 hongyan ma
  • 19 篇 chen huajun
  • 18 篇 ren haopeng
  • 18 篇 niu shuaicheng
  • 18 篇 zhang yifan
  • 17 篇 xia shuyin

语言

  • 2,159 篇 英文
  • 162 篇 其他
  • 34 篇 中文
  • 2 篇 葡萄牙文
  • 1 篇 荷兰文
检索条件"机构=Key Laboratory of Big Data and Intelligent Robot "
2346 条 记 录,以下是1821-1830 订阅
排序:
3D Neuron Reconstruction in Tangled Neuronal Image With Deep Networks
收藏 引用
IEEE TRANSACTIONS ON MEDICAL IMAGING 2020年 第2期39卷 425-435页
作者: Li, Qiufu Shen, Linlin Shenzhen Univ Coll Comp Sci & Software Engn Comp Vis Inst Shenzhen 518060 Peoples R China Shenzhen Univ Natl Engn Lab Big Data Syst Comp Technol Shenzhen 518060 Peoples R China Shenzhen Univ Shenzhen Inst Artificial Intelligence & Robot Soc Shenzhen 518060 Peoples R China Shenzhen Univ Guangdong Key Lab Intelligent Informat Proc Shenzhen 518060 Peoples R China
Digital reconstruction or tracing of 3D neuron is essential for understanding the brain functions. While existing automatic tracing algorithms work well for the clean neuronal image with a single neuron, they are not ... 详细信息
来源: 评论
Single-path Bit Sharing for Automatic Loss-aware Model Compression
arXiv
收藏 引用
arXiv 2021年
作者: Liu, Jing Zhuang, Bohan Chen, Peng Shen, Chunhua Cai, Jianfei Tan, Mingkui The School of Software Engineering South China University of Technology China The Key Laboratory of Big Data and Intelligent Robot South China University of Technology Ministry of Education China The Pazhou Laboratory Guangzhou China The School of Computer Science the University of Adelaide Australia The Faculty of Information Technology Monash University Australia The College of Computer Science and Technology Zhejiang University Hangzhou China
Network pruning and quantization are proven to be effective ways for deep model compression. To obtain a highly compact model, most methods first perform network pruning and then conduct quantization based on the prun... 详细信息
来源: 评论
An intelligent Resource Scheduling Method with Edge Channel Deployment for BPM
An Intelligent Resource Scheduling Method with Edge Channel ...
收藏 引用
Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing, UIC-ATC
作者: Bowen Liu Wanchun Dou Xiaokang Zhou Xuyun Zhang Lianyong Qi Fei Dai Chaochao Chen State Key Laboratory for Novel Software Technology Nanjing University Nanjing China Faculty of Data Science Shiga University Hikone Japan Department of Computing Macquarie University Sydney Australia College of Computer and Software China University of Petroleum (East China) Qingdao China College of Big Data and Intelligent Engineering Southwest Forestry University Kunming China College of Computer Science and Technology Zhejiang University Hangzhou China
Edge computing is a novel computing paradigm that offers kinds of resources at the network edge. In edge computing, terminal users are connected to edge servers via the wireless network and there are various channels ...
来源: 评论
Meet Changes with Constancy: Learning Invariance in Multi-Source Translation  28
Meet Changes with Constancy: Learning Invariance in Multi-So...
收藏 引用
28th International Conference on Computational Linguistics, COLING 2020
作者: Liu, Jianfeng Luo, Ling Ao, Xiang Song, Yan Xu, Haoran Ye, Jian Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences China Beijing Key Laboratory of Mobile Computing and Pervasive Device China Key Laboratory of Intelligent Information Processing Chinese Academy of Sciences China The Chinese University of HongKong Shenzhen China Shenzhen Research Institute of Big Data China
Multi-source neural machine translation aims to translate from parallel sources of information (e.g. languages, images, etc.) to a single target language, which has shown better performance than most one-to-one system... 详细信息
来源: 评论
Non-invasive estimation of pulmonary hypertension and clinical deterioration risk in pediatric congenital heart disease:Development and validation of predictive tools
收藏 引用
Chinese Medical Journal 2024年 第11期137卷 1384-1386页
作者: Ting Wang Dansha Zhou Yuqin Chen Suhua Kuang Yue Xing Qijian Yi Zhengxia Pan Weibin Xu Jiao Rao Yunqi Liu Guoliang Lu Ziying Lin Xiang Li Yi Xie Yulong Wu Peng An Xiaoxiao Deng Jiayue He Jiayi Xie Chenxi Li Gang Geng Daiyin Tian Enmei Liu Jingsi Huang Zhou Fu Jian Wang Department of Respiratory Chongqing Higher Institution Engineering Research Center of Children’s Medical Big Data Intelligent ApplicationNational Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and DisordersChildren’s Hospital of Chongqing Medical UniversityChongqing 400014China State Key Laboratory of Respiratory Diseases National Center for Respiratory MedicineGuangdong Key Laboratory of Vascular DiseasesNational Clinical Research Center for Respiratory DiseasesGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouGuangdong 510120China Department of Cardiac Surgery The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouGuangdong 510120China Department of Cardiovascular Medicine Children’s Hospital of Chongqing Medical University National Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and DisordersChildren’s Hospital of Chongqing Medical UniversityChongqing 400014China Department of Thoracic and Cardiac Surgery Children’s Hospital of Chongqing Medical University National Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and DisordersChildren’s Hospital of Chongqing Medical UniversityChongqing 400014China Department of Cardiac Center of Guangdong Women and Children Hospital Guangzhou GuangzhouGuangdong 511400China Department of Guangzhou Laboratory Guangzhou International Bio IslandGuangzhouGuangdong 510005China
To the Editor:Owing to the heterogeneity of congenital heart disease-associated pulmonary hypertension(CHDPH)disease and the development of the pulmonary vascular system in pediatric patients,the management of CHD-PH ... 详细信息
来源: 评论
Stepdown SLOPE for Controlled Feature Selection
arXiv
收藏 引用
arXiv 2023年
作者: Liang, Jingxuan Zhang, Xuelin Chen, Hong Li, Weifu Tang, Xin College of Science Huazhong Agricultural University Wuhan430070 China College of Informatics Huazhong Agricultural University Wuhan430070 China Ping An Property & Casualty Insurance Company Shenzhen China Engineering Research Center of Intelligent Technology for Agriculture Ministry of Education Wuhan430070 China Key Laboratory of Smart Farming for Agricultural Animals Wuhan430070 China Hubei Engineering Technology Research Center of Agricultural Big Data Wuhan430070 China
Sorted L-One Penalized Estimation (SLOPE) has shown the nice theoretical property as well as empirical behavior recently on the false discovery rate (FDR) control of high-dimensional feature selection by adaptively im... 详细信息
来源: 评论
Dual attention mechanism object tracking algorithm based on Fully-convolutional Siamese network
Dual attention mechanism object tracking algorithm based on ...
收藏 引用
International Conference on Networking and Network Applications (NaNA)
作者: Sugang Ma Zixian Zhang Lei Zhang Yanping Chen Xiaobao Yang Lei Pu Zhiqiang Hou School of Computer Science and Technology Xi’an University of Posts and Telecommunications Xi’an Shaanxi China School of Information Engineering Chang’an University Xi’an Shaanxi China Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing Xi’an Key Laboratory of Big Data and Intelligent Computing Xi’an University of Posts and Telecommunications Xi’an Shaanxi China School of Information and Navigation Air Force Engineering University Xi’an Shaanxi China
In an effort to the problem of insufficient tracking performance of the Fully-convolutional Siamese network (SiamFC) in complex scenarios, a dual attention mechanism object tracking algorithm based on the Fully-convol... 详细信息
来源: 评论
Improving Incremental Learning: A Closer Look at the Softmax Function
SSRN
收藏 引用
SSRN 2024年
作者: Zhai, Zheng Zhang, Jiali Wang, Haiyu Wu, Mingxin Yang, Keshun Qiao, Xiaoyan Sun, Qiang Beijing Normal University No.18 Jinfeng Road Guangdong Zhuhai519087 China Shandong Technology and Business University Shandong Yantai China Yantai Key Laboratory of Big Data Modeling and Intelligent Computing Shandong China Immersion Technology and Evaluation Shandong Engineering Research Center Shandong China School of Mathematics Sichuan University Chengdu China College of Liberal Arts and Sciences University of Illinois Urbana-Champaign IL United States Department of Statistical Sciences University of Toronto ON Canada Department of Computer Science University of Toronto ON Canada Department of Statistics and Data Science MBZUAI Abu Dhabi United Arab Emirates
This paper investigates the limitations of the widely adopted softmax cross-entropy loss in incremental learning problems. Specifically, we highlight how the shift-invariant property of this loss function can lead to ... 详细信息
来源: 评论
Debiased visual question answering from feature and sample perspectives  21
Debiased visual question answering from feature and sample p...
收藏 引用
Proceedings of the 35th International Conference on Neural Information Processing Systems
作者: Zhiquan Wen Guanghui Xu Mingkui Tan Qingyao Wu Qi Wu School of Software Engineering South China University of Technology China and PengCheng Laboratory China School of Software Engineering South China University of Technology China School of Software Engineering South China University of Technology China and Key Laboratory of Big Data and Intelligent Robot (South China University of Technology) Ministry of Education School of Computer Science University of Adelaide
Visual question answering (VQA) is designed to examine the visual-textual reasoning ability of an intelligent agent. However, recent observations show that many VQA models may only capture the biases between questions...
来源: 评论
Distributed Complementary Binary Quantization for Joint Hash Table Learning
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020年 第12期31卷 5312-5323页
作者: Liu, Xianglong Fu, Qiang Wang, Deqing Bai, Xiao Wu, Xinyu Tao, Dacheng Beihang Univ State Key Lab Software Dev Environm Beijing 100191 Peoples R China Beihang Univ Beijing Adv Innovat Ctr Big Data Based Precis Med Beijing 100191 Peoples R China Chinese Acad Sci Shenzhen Inst Adv Technol Guangdong Prov Key Lab Robot & Intelligent Syst Shenzhen 100864 Peoples R China Chinese Univ Hong Kong Dept Mech & Automat Engn Hong Kong Peoples R China Univ Sydney Darlington NSW 2008 Australia
Building multiple hash tables serves as a very successful technique for gigantic data indexing, which can simultaneously guarantee both the search accuracy and efficiency. However, most of existing multitable indexing... 详细信息
来源: 评论