咨询与建议

限定检索结果

文献类型

  • 1,216 篇 会议
  • 1,132 篇 期刊文献

馆藏范围

  • 2,348 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,605 篇 工学
    • 1,148 篇 计算机科学与技术...
    • 780 篇 软件工程
    • 342 篇 信息与通信工程
    • 294 篇 电气工程
    • 210 篇 控制科学与工程
    • 175 篇 生物工程
    • 107 篇 光学工程
    • 101 篇 电子科学与技术(可...
    • 99 篇 生物医学工程(可授...
    • 89 篇 机械工程
    • 75 篇 化学工程与技术
    • 71 篇 仪器科学与技术
    • 59 篇 交通运输工程
    • 54 篇 土木工程
    • 52 篇 动力工程及工程热...
    • 48 篇 建筑学
    • 47 篇 网络空间安全
  • 735 篇 理学
    • 395 篇 数学
    • 199 篇 生物学
    • 178 篇 物理学
    • 119 篇 统计学(可授理学、...
    • 95 篇 化学
    • 56 篇 系统科学
  • 382 篇 管理学
    • 234 篇 管理科学与工程(可...
    • 166 篇 图书情报与档案管...
    • 77 篇 工商管理
  • 135 篇 医学
    • 113 篇 临床医学
    • 76 篇 基础医学(可授医学...
  • 57 篇 法学
    • 43 篇 社会学
  • 43 篇 教育学
    • 40 篇 教育学
  • 43 篇 农学
  • 29 篇 经济学
  • 17 篇 文学
  • 3 篇 军事学
  • 3 篇 艺术学

主题

  • 108 篇 feature extracti...
  • 90 篇 training
  • 88 篇 semantics
  • 84 篇 deep learning
  • 56 篇 computational mo...
  • 52 篇 predictive model...
  • 48 篇 data models
  • 47 篇 task analysis
  • 45 篇 accuracy
  • 42 篇 convolution
  • 40 篇 contrastive lear...
  • 39 篇 visualization
  • 37 篇 object detection
  • 36 篇 neural networks
  • 30 篇 machine learning
  • 29 篇 convolutional ne...
  • 27 篇 reinforcement le...
  • 26 篇 graph neural net...
  • 25 篇 image segmentati...
  • 25 篇 speech processin...

机构

  • 132 篇 south china univ...
  • 69 篇 key laboratory o...
  • 69 篇 minist educ key ...
  • 54 篇 south china univ...
  • 54 篇 south china univ...
  • 54 篇 school of comput...
  • 51 篇 pazhou lab peopl...
  • 47 篇 school of softwa...
  • 42 篇 jiangsu key labo...
  • 41 篇 south china univ...
  • 40 篇 south china univ...
  • 39 篇 school of electr...
  • 39 篇 national enginee...
  • 36 篇 hong kong polyte...
  • 36 篇 key laboratory o...
  • 36 篇 jiangsu key labo...
  • 35 篇 hunan provincial...
  • 35 篇 chongqing key la...
  • 32 篇 peng cheng labor...
  • 32 篇 key laboratory o...

作者

  • 98 篇 cai yi
  • 82 篇 tan mingkui
  • 48 篇 wu qingyao
  • 44 篇 shen linlin
  • 43 篇 li qing
  • 38 篇 wang guoyin
  • 38 篇 xu xiaolong
  • 29 篇 xiaolong xu
  • 28 篇 xu xuemiao
  • 26 篇 huang qingbao
  • 24 篇 zhou zhiheng
  • 24 篇 huang qingming
  • 22 篇 xu qianqian
  • 21 篇 xie jiayuan
  • 20 篇 hongyan ma
  • 19 篇 chen huajun
  • 18 篇 ren haopeng
  • 18 篇 niu shuaicheng
  • 17 篇 wang tao
  • 17 篇 liu yiwen

语言

  • 2,015 篇 英文
  • 308 篇 其他
  • 43 篇 中文
  • 2 篇 葡萄牙文
  • 1 篇 荷兰文
检索条件"机构=Key Laboratory of Big Data and Intelligent Robot "
2348 条 记 录,以下是921-930 订阅
排序:
Community Evolution Tracking Based on High-Order Neighbor Consideration and Node Change Identification  19th
Community Evolution Tracking Based on High-Order Neighbor C...
收藏 引用
19th CCF Conference on Computer Supported Cooperative Work and Social Computing, ChineseCSCW 2024
作者: Zhang, Yunan Wang, Chaohui Wu, Ling Guo, Kun College of Computer and Data Science Fuzhou University Fuzhou350108 China Engineering Research Center of Big Data Intelligence Ministry of Education Fuzhou350108 China Fujian Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350108 China
Community evolution tracking is widely used in complex network analysis, which analyzes and identifies how communities evolve over time based on dynamic community detection. However, the current incremental dynamic co... 详细信息
来源: 评论
Community-Aware Heterogeneous Graph Contrastive Learning  19th
Community-Aware Heterogeneous Graph Contrastive Learning
收藏 引用
19th CCF Conference on Computer Supported Cooperative Work and Social Computing, ChineseCSCW 2024
作者: Li, Xinying Wu, Ling Guo, Kun College of Computer and Data Science Fuzhou University Fuzhou350108 China Engineering Research Center of Big Data Intelligence Ministry of Education Fuzhou350108 China Fujian Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350108 China
Recently, heterogeneous graph contrastive learning, which can mine supervision signals from the data, has attracted widespread attention. However, most existing methods employ random data augmentation strategies to co... 详细信息
来源: 评论
DBSSL: A Scheme to Detect Backdoor Attacks in Self-Supervised Learning Models
收藏 引用
IEEE Transactions on Dependable and Secure Computing 2025年
作者: Huang, Yuxian Yang, Geng Yuan, Dong Yu, Shui Nanjing University of Posts and Telecommunication College of Computer Science and Software China Jiangsu Key Laboratory of Big Data Security and Intelligent Processing China University of Sydney School of Electrical and Information Engineering Australia University of Technology Sydney School of Computer Science Australia
Recently, self-supervised learning has garnered significant attention for its ability to extract high-quality features from unlabeled data. However, existing research indicates that backdoor attacks can pose significa... 详细信息
来源: 评论
MNN: Mixed Nearest-Neighbors for Self-Supervised Learning
arXiv
收藏 引用
arXiv 2023年
作者: Long, Xianzhong Peng, Chen Li, Yun School of Computer Science Nanjing University of Posts and Telecommunications Nanjing210023 China Jiangsu Key Laboratory of Big Data Security and Intelligent Processing Nanjing210023 China
In contrastive self-supervised learning, positive samples are typically drawn from the same image but in different augmented views, resulting in a relatively limited source of positive samples. An effective way to all... 详细信息
来源: 评论
LogPal: A Generic Anomaly Detection Scheme of Heterogeneous Logs for Network Systems
收藏 引用
Security and Communication Networks 2023年 第1期2023卷
作者: Sun, Lei Xu, Xiaolong Jiangsu Key Laboratory of Big Data Security & Intelligent Processing Nanjing University of Posts and Telecommunications Nanjing210023 China School of Computer Science Nanjing University of Posts and Telecommunications Nanjing210023 China
As a key resource for diagnosing and identifying problems, network syslog contains vast quantities of information. And it is the main source of data for anomaly detection of systems. Syslog presents the characteristic... 详细信息
来源: 评论
A Novel DDoS Detection Model for SDN Using Single-Class Cluster Oversampling and Weighted Ensemble Method
A Novel DDoS Detection Model for SDN Using Single-Class Clus...
收藏 引用
International Conference on Network Protocols
作者: Hao Zhang Shuqi Wu Jie Pan Zhi Wang Xiaolong Sun College of Computer and Data Science Fuzhou University Fuzhou China Fujian Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou China Engineering Research Center of Big Data Intelligence Chinese Ministry of Education Fuzhou China
The centralized control plane characteristic of Software Defined Networking (SDN) makes it a prime target for Distributed Denial of Service (DDoS) attacks. A significant issue in network traffic data is the severe imb... 详细信息
来源: 评论
A Region Enhanced Discrete Multi-Objective Fireworks Algorithm for Low-Carbon Vehicle Routing Problem
收藏 引用
Complex System Modeling and Simulation 2022年 第2期2卷 142-155页
作者: Xiaoning Shen Jiaqi Lu Xuan You Liyan Song Zhongpei Ge Collaborative Innovation Center of Atmospheric Environment and Equipment Technology Jiangsu Key Laboratory of Big Data Analysis TechnologySchool of AutomationNanjing University of Information Science and TechnologyNanjing 210044China School of Automation Nanjing University of Information Science and TechnologyNanjing 210044China Institute of Trustworthy Autonomous Systems and also with the Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent ComputationDepartment of Computer Science and EngineeringSouthern University of Science and TechnologyShenzhen 518055China
A constrained multi-objective optimization model for the low-carbon vehicle routing problem(VRP)is established.A carbon emission measurement method considering various practical factors is *** minimizes both the total... 详细信息
来源: 评论
D-FGNAE: Decentralized Federated Graph Normalized AutoEncoder  19th
D-FGNAE: Decentralized Federated Graph Normalized AutoEncode...
收藏 引用
19th CCF Conference on Computer Supported Cooperative Work and Social Computing, ChineseCSCW 2024
作者: Liang, Yuting Cai, Weixin Guo, Kun College of Computer and Data Science Fuzhou University Fuzhou350108 China Engineering Research Center of Big Data Intelligence Ministry of Education Fuzhou350108 China Fujian Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350108 China
Graphs widely exist in real-world, and Graph Neural Networks (GNNs) have exhibited exceptional efficacy in graph learning in diverse fields. With the strengthening of data privacy protection worldwide in recent years,... 详细信息
来源: 评论
UGCM-LU: A Unified Stream and Batch Graph Computing Model with Local Update for Community Detection  19th
UGCM-LU: A Unified Stream and Batch Graph Computing Model w...
收藏 引用
19th CCF Conference on Computer Supported Cooperative Work and Social Computing, ChineseCSCW 2024
作者: Li, Hong Wu, Ling Guo, Kun College of Computer and Data Science Fuzhou University Fuzhou350108 China Engineering Research Center of Big Data Intelligence Ministry of Education Fuzhou350108 China Fujian Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350108 China
Unified stream and batch computing (USBC) aims to incorporate stream and batch computation into a unified framework, thereby enabling the development of a one-stop solution for stream and batch data processing and enh... 详细信息
来源: 评论
DFGET: Displacement-Field Assisted Graph Energy Transmitter for Gland Instance Segmentation
DFGET: Displacement-Field Assisted Graph Energy Transmitter ...
收藏 引用
International Conference on Signal Processing Proceedings (ICSP)
作者: Caiqing Jian Yongbin Qin Lihui Wang Chen Ye Xinyu Cheng GState Key Laboratory of Public Big Data College of Computer Science and Technology Engineering Research Center of Text Computing & Cognitive Intelligence Ministry of Education Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province Guizhou University Guiyang China
Gland instance segmentation is an essential but challenging task in the diagnosis of adenocarcinoma. The existing models usually achieve gland instance segmentation through multi-task learning and boundary loss constr... 详细信息
来源: 评论