咨询与建议

限定检索结果

文献类型

  • 326 篇 期刊文献
  • 275 篇 会议

馆藏范围

  • 601 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 413 篇 工学
    • 307 篇 计算机科学与技术...
    • 266 篇 软件工程
    • 94 篇 信息与通信工程
    • 70 篇 生物工程
    • 51 篇 电气工程
    • 48 篇 控制科学与工程
    • 38 篇 机械工程
    • 35 篇 光学工程
    • 31 篇 生物医学工程(可授...
    • 29 篇 电子科学与技术(可...
    • 16 篇 化学工程与技术
    • 14 篇 建筑学
    • 14 篇 土木工程
    • 13 篇 动力工程及工程热...
    • 12 篇 仪器科学与技术
    • 11 篇 交通运输工程
    • 11 篇 网络空间安全
  • 206 篇 理学
    • 112 篇 数学
    • 73 篇 生物学
    • 38 篇 物理学
    • 31 篇 统计学(可授理学、...
    • 18 篇 系统科学
    • 17 篇 化学
  • 116 篇 管理学
    • 67 篇 管理科学与工程(可...
    • 56 篇 图书情报与档案管...
    • 23 篇 工商管理
  • 24 篇 法学
    • 19 篇 社会学
  • 18 篇 医学
    • 17 篇 临床医学
    • 12 篇 基础医学(可授医学...
  • 8 篇 教育学
    • 8 篇 教育学
  • 6 篇 经济学
  • 6 篇 农学
  • 3 篇 军事学

主题

  • 33 篇 semantics
  • 21 篇 training
  • 19 篇 deep learning
  • 16 篇 feature extracti...
  • 13 篇 convolution
  • 11 篇 visualization
  • 10 篇 conferences
  • 10 篇 neural networks
  • 10 篇 graph neural net...
  • 9 篇 data models
  • 8 篇 task analysis
  • 8 篇 signal processin...
  • 8 篇 predictive model...
  • 8 篇 decoding
  • 8 篇 codes
  • 7 篇 deep neural netw...
  • 7 篇 three-dimensiona...
  • 7 篇 recommender syst...
  • 7 篇 speech processin...
  • 7 篇 optimization

机构

  • 48 篇 school of softwa...
  • 38 篇 school of big da...
  • 38 篇 key laboratory o...
  • 20 篇 state key labora...
  • 19 篇 school of comput...
  • 19 篇 school of softwa...
  • 19 篇 school of cyber ...
  • 18 篇 national enginee...
  • 17 篇 hubei key labora...
  • 17 篇 national enginee...
  • 17 篇 hubei engineerin...
  • 16 篇 key laboratory o...
  • 16 篇 services computi...
  • 15 篇 college of compu...
  • 15 篇 beijing advanced...
  • 15 篇 cluster and grid...
  • 15 篇 state key labora...
  • 14 篇 key laboratory o...
  • 13 篇 school of inform...
  • 12 篇 peng cheng labor...

作者

  • 15 篇 huang sheng
  • 15 篇 wu qingyao
  • 14 篇 hu shengshan
  • 14 篇 li minghui
  • 13 篇 tan mingkui
  • 13 篇 cai yi
  • 12 篇 shen linlin
  • 11 篇 jin hai
  • 10 篇 zhang leo yu
  • 10 篇 qingyao wu
  • 9 篇 cui bin
  • 9 篇 meng yan
  • 8 篇 zhou ziqi
  • 7 篇 lü jinhu
  • 7 篇 ling xu
  • 7 篇 fei dai
  • 7 篇 zhang wentao
  • 7 篇 lin guosheng
  • 7 篇 wang jin
  • 6 篇 li jiangmeng

语言

  • 555 篇 英文
  • 42 篇 其他
  • 5 篇 中文
检索条件"机构=Key Laboratory of Big Data and Intelligent Robot School of Software Engineering"
601 条 记 录,以下是141-150 订阅
排序:
CA-Edit: Causality-Aware Condition Adapter for High-Fidelity Local Facial Attribute Editing
arXiv
收藏 引用
arXiv 2024年
作者: Xian, Xiaole He, Xilin Niu, Zenghao Zhang, Junliang Xie, Weicheng Song, Siyang Yu, Zitong Shen, Linlin Computer Vision Institute School of Computer Science & Software Engineering Shenzhen University China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University China Guangdong Key Laboratory of Intelligent Information Processing China University of Exeter United Kingdom Great Bay University China
For efficient and high-fidelity local facial attribute editing, most existing editing methods either require additional finetuning for different editing effects or tend to affect beyond the editing regions. Alternativ...
来源: 评论
Unifying and Improving Graph Convolutional Neural Networks with Wavelet Denoising Filters  23
Unifying and Improving Graph Convolutional Neural Networks w...
收藏 引用
2023 World Wide Web Conference, WWW 2023
作者: Wan, Liangtian Li, Xiaona Han, Huijin Yan, Xiaoran Sun, Lu Ning, Zhaolong Xia, Feng Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province School of Software Dalian University of Technology Dalian China Research Center of Big Data Intelligence Research Institute of Artificial Intelligence Zhejiang Lab Hangzhou China Department of Communication Engineering Institute of Information Science Technology Dalian Maritime University Dalian China School of Communication and Information Engineering Chongqing University of Posts and Telecommunications Chongqing China School of Computing Technologies Rmit University Melbourne Australia
Graph convolutional neural network (GCN) is a powerful deep learning framework for network data. However, variants of graph neural architectures can lead to drastically different performance on different tasks. Model ... 详细信息
来源: 评论
DEGSTalk: Decomposed Per-Embedding Gaussian Fields for Hair-Preserving Talking Face Synthesis
arXiv
收藏 引用
arXiv 2024年
作者: Deng, Kaijun Zheng, Dezhi Xie, Jindong Wang, Jinbao Xie, Weicheng Shen, Linlin Song, Siyang Computer Vision Institute School of Computer Science and Software Engineering Shenzhen University China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University China Guangdong Provincial Key Laboratory of Intelligent Information Processing China Department of Computer Science University of Exeter United Kingdom
Accurately synthesizing talking face videos and capturing fine facial features for individuals with long hair presents a significant challenge. To tackle these challenges in existing methods, we propose a decomposed p... 详细信息
来源: 评论
HairDiffusion: Vivid Multi-Colored Hair Editing via Latent Diffusion
arXiv
收藏 引用
arXiv 2024年
作者: Zeng, Yu Zhang, Yang Liu, Jiachen Shen, Linlin Deng, Kaijun He, Weizhao Wang, Jinbao Computer Vision Institute School of Computer Science & Software Engineering Shenzhen University China Shenzhen Institute of Artificial Intelligence and Robotics for Society China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University China Guangdong Provincial Key Laboratory of Intelligent Information Processing China
Hair editing is a critical image synthesis task that aims to edit hair color and hairstyle using text descriptions or reference images, while preserving irrelevant attributes (e.g., identity, background, cloth). Many ... 详细信息
来源: 评论
Detecting Adversarial data by Probing Multiple Perturbations Using Expected Perturbation Score
arXiv
收藏 引用
arXiv 2023年
作者: Zhang, Shuhai Liu, Feng Yang, Jiahao Yang, Yifan Li, Changsheng Han, Bo Tan, Mingkui School of Software Engineering South China University of Technology China Pazhou Laboratory China The University of Melbourne Australia Beijing Institute of Technology Beijing China Department of Computer Science Hong Kong Baptist University Hong Kong Key Laboratory of Big Data and Intelligent Robot Ministry of Education China
Adversarial detection aims to determine whether a given sample is an adversarial one based on the discrepancy between natural and adversarial distributions. Unfortunately, estimating or comparing two data distribution... 详细信息
来源: 评论
Source Code Summarization in the Era of Large Language Models
arXiv
收藏 引用
arXiv 2024年
作者: Sun, Weisong Miao, Yun Li, Yuekang Zhang, Hongyu Fang, Chunrong Liu, Yi Deng, Gelei Liu, Yang Chen, Zhenyu State Key Laboratory for Novel Software Technology Nanjing University Nanjing China College of Computing and Data Science Nanyang Technological University Singapore Singapore School of Computer Science and Engineering University of New South Wales Sidney Australia School of Big Data and Software Engineering Chongqing University Chongqing China
To support software developers in understanding and maintaining programs, various automatic (source) code summarization techniques have been proposed to generate a concise natural language summary (i.e., comment) for ... 详细信息
来源: 评论
ALFLAT: Chinese NER Using ALBERT, Flat-Lattice Transformer, Word Segmentation and Entity Dictionary  2nd
ALFLAT: Chinese NER Using ALBERT, Flat-Lattice Transformer, ...
收藏 引用
2nd EAI International Conference on Applied Cryptography in Computer and Communications, AC3 2022
作者: Lv, Haifeng Ding, Yong School of Data Science and Software Engineering Wuzhou University Wuzhou China Guangxi Key Laboratory of Cryptography and Information Security School of Computer Science and Information Security Guilin University of Electronic Technology Guilin China Guangxi Key Laboratory of Machine Vision and Intelligent Control Wuzhou University Wuzhou China
Recently, the character-word lattice structure has been proved to be effective for Chinese named entity recognition (NER) by incorporating the word information. However, one hand, since the lattice structure is dynami... 详细信息
来源: 评论
Diffusion-Based mmWave Radar Point Cloud Enhancement Driven by Range Images
arXiv
收藏 引用
arXiv 2025年
作者: Wu, Ruixin Li, Zihan Wang, Jin Xu, Xiangyu Yu, Huan Zheng, Zhi Huang, Kaixiang Lu, Guodong The State Key Laboratory of Fluid Power and Mechatronic Systems School of Mechanical Engineering Zhejiang University Hangzhou310058 China Zhejiang Key Laboratory of Industrial Big Data and Robot Intelligent Systems Zhejiang University Hangzhou310058 China Robotics Research Center of Yuyao City Ningbo315400 China State Key Laboratory of Robotics and Systems Department of Mechatronics Engineering Harbin Institute of Technology Harbin150001 China
Millimeter-wave (mmWave) radar has attracted significant attention in robotics and autonomous driving. However, despite the perception stability in harsh environments, the point cloud generated by mmWave radar is rela... 详细信息
来源: 评论
Efficient Test-Time Model Adaptation without Forgetting
arXiv
收藏 引用
arXiv 2022年
作者: Niu, Shuaicheng Wu, Jiaxiang Zhang, Yifan Chen, Yaofo Zheng, Shijian Zhao, Peilin Tan, Mingkui School of Software Engineering South China University of Technology China Key Laboratory of Big Data and Intelligent Robot Ministry of Education China Tencent AI Lab China National University of Singapore Singapore Pazhou Laboratory China
Test-time adaptation (TTA) seeks to tackle potential distribution shifts between training and testing data by adapting a given model w.r.t. any testing sample. This task is particularly important for deep models when ... 详细信息
来源: 评论
Confidence-aware Contrastive Learning for Selective Classification
arXiv
收藏 引用
arXiv 2024年
作者: Wu, Yu-Chang Lyu, Shen-Huan Shang, Haopu Wang, Xiangyu Qian, Chao National Key Laboratory for Novel Software Technology Nanjing University China School of Artificial Intelligence Nanjing University China Key Laboratory of Water Big Data Technology of Ministry of Water Resources Hohai University China College of Computer Science and Software Engineering Hohai University China
Selective classification enables models to make predictions only when they are sufficiently confident, aiming to enhance safety and reliability, which is important in high-stakes scenarios. Previous methods mainly use... 详细信息
来源: 评论