咨询与建议

限定检索结果

文献类型

  • 330 篇 期刊文献
  • 278 篇 会议

馆藏范围

  • 608 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 415 篇 工学
    • 308 篇 计算机科学与技术...
    • 266 篇 软件工程
    • 94 篇 信息与通信工程
    • 70 篇 生物工程
    • 52 篇 电气工程
    • 48 篇 控制科学与工程
    • 38 篇 机械工程
    • 35 篇 光学工程
    • 31 篇 生物医学工程(可授...
    • 29 篇 电子科学与技术(可...
    • 16 篇 化学工程与技术
    • 14 篇 建筑学
    • 14 篇 土木工程
    • 13 篇 动力工程及工程热...
    • 12 篇 仪器科学与技术
    • 11 篇 交通运输工程
    • 11 篇 网络空间安全
  • 206 篇 理学
    • 112 篇 数学
    • 73 篇 生物学
    • 38 篇 物理学
    • 31 篇 统计学(可授理学、...
    • 18 篇 系统科学
    • 17 篇 化学
  • 116 篇 管理学
    • 67 篇 管理科学与工程(可...
    • 56 篇 图书情报与档案管...
    • 23 篇 工商管理
  • 24 篇 法学
    • 19 篇 社会学
  • 18 篇 医学
    • 17 篇 临床医学
    • 12 篇 基础医学(可授医学...
  • 8 篇 教育学
    • 8 篇 教育学
  • 6 篇 经济学
  • 6 篇 农学
  • 3 篇 军事学

主题

  • 34 篇 semantics
  • 22 篇 training
  • 20 篇 deep learning
  • 16 篇 feature extracti...
  • 13 篇 convolution
  • 11 篇 neural networks
  • 11 篇 visualization
  • 10 篇 conferences
  • 10 篇 graph neural net...
  • 9 篇 data models
  • 8 篇 task analysis
  • 8 篇 signal processin...
  • 8 篇 optimization
  • 8 篇 predictive model...
  • 8 篇 decoding
  • 8 篇 codes
  • 7 篇 deep neural netw...
  • 7 篇 three-dimensiona...
  • 7 篇 recommender syst...
  • 7 篇 speech processin...

机构

  • 49 篇 school of softwa...
  • 38 篇 school of big da...
  • 38 篇 key laboratory o...
  • 21 篇 school of softwa...
  • 20 篇 state key labora...
  • 20 篇 school of cyber ...
  • 19 篇 school of comput...
  • 18 篇 national enginee...
  • 17 篇 hubei key labora...
  • 17 篇 national enginee...
  • 17 篇 hubei engineerin...
  • 16 篇 key laboratory o...
  • 16 篇 college of compu...
  • 16 篇 services computi...
  • 15 篇 key laboratory o...
  • 15 篇 beijing advanced...
  • 15 篇 cluster and grid...
  • 15 篇 state key labora...
  • 14 篇 school of inform...
  • 12 篇 peng cheng labor...

作者

  • 15 篇 huang sheng
  • 15 篇 wu qingyao
  • 14 篇 hu shengshan
  • 14 篇 li minghui
  • 13 篇 tan mingkui
  • 13 篇 cai yi
  • 12 篇 shen linlin
  • 11 篇 jin hai
  • 10 篇 zhang leo yu
  • 10 篇 qingyao wu
  • 9 篇 cui bin
  • 9 篇 meng yan
  • 8 篇 hai jin
  • 8 篇 zhou ziqi
  • 7 篇 lü jinhu
  • 7 篇 ling xu
  • 7 篇 minghui li
  • 7 篇 shengshan hu
  • 7 篇 fei dai
  • 7 篇 zhang wentao

语言

  • 562 篇 英文
  • 42 篇 其他
  • 5 篇 中文
检索条件"机构=Key Laboratory of Big Data and Intelligent Robot School of Software Engineering"
608 条 记 录,以下是351-360 订阅
排序:
Adaptive Perception for Unified Visual Multi-modal Object Tracking
IEEE Transactions on Artificial Intelligence
收藏 引用
IEEE Transactions on Artificial Intelligence 2025年
作者: Hu, Xiantao Zhong, Bineng Liang, Qihua Shi, Liangtao Mo, Zhiyi Tai, Ying Yang, Jian Guangxi Normal University Guangxi Key Lab of Multi-Source Information Mining Guilin541004 China Guangxi Normal University Security Guilin541004 China Guangxi Normal University Intelligent Technology Guilin541004 China Guangxi Normal University Ministry of Education Guilin541004 China Wuzhou University School of Data Science Wuzhou543002 China Wuzhou University Software Engineering Wuzhou543002 China Nanjing University State Key Laboratory for Novel Software Technology Suzhou215163 China Nanjing University of Science and Technology School of Computer Science Nanjing210094 China Nanjing University of Science and Technology Engineering Nanjing210094 China
Recently, many multi-modal trackers prioritize RGB as the dominant modality, treating other modalities as auxiliary, and fine-tuning separately various multi-modal tasks. This imbalance in modality dependence limits t... 详细信息
来源: 评论
CodeEnhance: A Codebook-Driven Approach for Low-Light Image Enhancement
arXiv
收藏 引用
arXiv 2024年
作者: Wu, Xu Hou, XianXu Lai, Zhihui Zhou, Jie Zhang, Ya-Nan Pedrycz, Witold Shen, Linlin The Computer Vision Institute College of Computer Science and Software Engineering Shenzhen University Shenzhen518060 China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen518060 China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen518060 China School of AI and Advanced Computing Xi’an Jiaotong-Liverpool University China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University SZU Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Guangdong Shenzhen518060 China The Department of Electrical & Computer Engineering University of Alberta University of Alberta Canada
Low-light image enhancement (LLIE) aims to improve low-illumination images. However, existing methods face two challenges: (1) uncertainty in restoration from diverse brightness degradations;(2) loss of texture and co... 详细信息
来源: 评论
Deep Learning Strategies for Addressing Anomalous Exposure in Image Processing: The FARDBUNet Approach  5
Deep Learning Strategies for Addressing Anomalous Exposure i...
收藏 引用
5th International Conference on High Performance big data and intelligent Systems, HDIS 2023
作者: Zhou, Qi Yang, Kai Ke, Zunwang Wang, Gang Zhang, Yugui Jia, Yizhen Cao, Fengcai Ma, Junxiao Liu, Changlin Zhang, Kaijie Wu, Min School of Semiconductor Science and Technology South China Normal University GuangZhou510631 China CGNPC Uranium Industry Development Co. Ltd. Beijing100020 China School of Software Xinjiang University Urumqi830046 China School of Computing and Data Engineering NingboTech University Ningbo315100 China AnnLab Institute of Semiconductors Chinese Academy of Sciences Beijing100083 China Beijing Key Laboratory of Semiconductor Neural Network Intelligent Sensing and Computing Technology Beijing100083 China School of Integrated Circuits University of Chinese Academy of Sciences Beijing100049 China Co. Ltd Beijing100176 China School of Information Beijing Forestry University Beijing100083 China
In real-world scenarios, capturing scenes with excessive dynamic range often leads to the partial loss of highlight or dark area information due to irradiance variations and limitations in the capture capabilities of ... 详细信息
来源: 评论
Grain: Improving data efficiency of graph neural networks via diversified influence maximization
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Wentao Yang, Zhi Wang, Yexin Shen, Yu Li, Yang Wang, Liang Cui, Bin School of EECS Key Laboratory of High Confidence Software Technologies Peking University Tencent Inc Center for Data Science Peking University National Engineering Laboratory for Big Data Analysis and Applications
data selection methods, such as active learning and core-set selection, are useful tools for improving the data efficiency of deep learning models on large-scale datasets. However, recent deep learning models have mov... 详细信息
来源: 评论
Robust Dynamic Broadcasting for Multi-Hop Wireless Networks Under Time-Varying Connectivity and Dynamic SINR
收藏 引用
IEEE Transactions on Mobile Computing 2025年
作者: Tian, Xiang Yu, Jiguo Luo, Chuanwen Yu, Dongxiao Wang, Guijuan Feng, Bin Jinan250353 China Shandong Fundamental Research Center for Computer Science Shandong Provincial Key Laboratory of Industrial Network and Information System Security Jinan250353 China University of Electronic Science and Technology of China School of Information and Software Engineering Chengdu610054 China Qilu University of Technology Big Data Institute Jinan250353 China Beijing Forestry University School of Information Science and Technology Beijing100083 China Shandong University School of Computer Science and Technology Shandong Qingdao266237 China Taishan University School of Information Science and Technology 271000 China
Throughput-optimal dynamic broadcasting is an essential cornerstone for the efficient operation of Multi-hop Wireless Networks (MWNs). Most existing algorithms for this problem were developed assuming static interfere... 详细信息
来源: 评论
ROD: Reception-aware online distillation for sparse graphs
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Wentao Jiang, Yuezihan Li, Yang Sheng, Zeang Shen, Yu Miao, Xupeng Wang, Liang Yang, Zhi Cui, Bin School of EECS Key Laboratory of High Confidence Software Technologies Peking University Center for Data Science Peking University National Engineering Laboratory for Big Data Analysis and Applications Alibaba Group
Graph neural networks (GNNs) have been widely used in many graph-based tasks such as node classification, link prediction, and node clustering. However, GNNs gain their performance benefits mainly from performing the ... 详细信息
来源: 评论
Larger receptive Field and Context Information for Pose estimation:Larger Gaussian kernel  5
Larger receptive Field and Context Information for Pose esti...
收藏 引用
5th International Conference on High Performance big data and intelligent Systems, HDIS 2023
作者: Ma, Junxiao Yang, Kai Ke, Zunwang Wang, Gang Zhang, Yugui Cao, Fengcai Zhou, Qi Fei, Yang School of Information Beijing Forestry University Beijing100083 China CGNPC Uranium Industry Development Co. Ltd. Beijing100020 China School of Software Xinjiang University Urumqi830046 China School of Computing and Data Engineering NingboTech University Ningbo315100 China AnnLab Institute of Semiconductors Chinese Academy of Sciences Beijing100083 China Beijing Key Laboratory of Semiconductor Neural Network Intelligent Sensing and Computing Technology Beijing100083 China School of Integrated Circuits University of Chinese Academy of Sciences Beijing100049 China Co. Ltd Beijing100176 China School of Semiconductor Science and Technology South China Normal University GuangZhou510631 China
The field of pose estimation has a wide range of application prospects in various industries in the current era. With the continuous development of deep learning techniques, the effects in the field of human pose esti... 详细信息
来源: 评论
data-driven Industrial robot Arm Calibration: A Machine Learning Perspective  18
Data-driven Industrial Robot Arm Calibration: A Machine Lear...
收藏 引用
18th IEEE International Conference on Networking, Sensing and Control, ICNSC 2021
作者: Li, Zhibin Li, Shuai Luo, Xin University of Chinese Academy of Sciences School of Computer Science and Technology Chongqing University of Posts and Telecommunications Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing School Chongqing China Swansea University Department of Electronics and Electrical Engineering Swansea United Kingdom University of Chinese Academy of Sciences Chongqing Key Laboratory of Big Data and Intelligent Computing Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing School Chongqing China
robot arms have been widely used in industry. The absolute positioning error of robots without calibration can reach several millimeters, which cannot meet the application requirements of accurate operation. Therefore... 详细信息
来源: 评论
Sparse Training data-Based Hyperspectral Image Super Resolution Via ANFIS Interpolation
Sparse Training Data-Based Hyperspectral Image Super Resolut...
收藏 引用
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
作者: Jing Yang Changjing Shang Lu Chen Pan Su Qiang Shen School of Automation and Software Engineering Shanxi University Taiyuan China Department of Computer Science Aberystwyth University Aberystwyth UK Insti. of Big Data Science & Industry Shanxi University Taiyuan China Department of Computer Hebei Key Laboratory of Knowledge Computing for Energy & Power Baoding North China Electric Power University China
Hyperspectral image super resolution aims to improve the spatial resolution of given hyperspectral images, which has become a highly attractive topic in the field of image processing. Existing techniques typically foc...
来源: 评论
TraffNet: Learning Causality of Traffic Generation for What-if Prediction
arXiv
收藏 引用
arXiv 2023年
作者: Xu, Ming Ai, Qiang Li, Ruimin Ma, Yunyi Qi, Geqi Meng, Xiangfu Jin, Haibo The Software College Liaoning Technical University Liaoning Huludao125100 China The Department of Civil Engineering Tsinghua University Beijing100084 China The Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport Beijing Jiaotong University Beijing100091 China The School of Electronic and Information Engineering Liaoning Technical University Liaoning Huludao125100 China
Real-time what-if traffic prediction is crucial for decision making in intelligent traffic management and control. Although current deep learning methods demonstrate significant advantages in traffic prediction, they ... 详细信息
来源: 评论