咨询与建议

限定检索结果

文献类型

  • 330 篇 期刊文献
  • 278 篇 会议

馆藏范围

  • 608 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 415 篇 工学
    • 308 篇 计算机科学与技术...
    • 266 篇 软件工程
    • 94 篇 信息与通信工程
    • 70 篇 生物工程
    • 52 篇 电气工程
    • 48 篇 控制科学与工程
    • 38 篇 机械工程
    • 35 篇 光学工程
    • 31 篇 生物医学工程(可授...
    • 29 篇 电子科学与技术(可...
    • 16 篇 化学工程与技术
    • 14 篇 建筑学
    • 14 篇 土木工程
    • 13 篇 动力工程及工程热...
    • 12 篇 仪器科学与技术
    • 11 篇 交通运输工程
    • 11 篇 网络空间安全
  • 206 篇 理学
    • 112 篇 数学
    • 73 篇 生物学
    • 38 篇 物理学
    • 31 篇 统计学(可授理学、...
    • 18 篇 系统科学
    • 17 篇 化学
  • 116 篇 管理学
    • 67 篇 管理科学与工程(可...
    • 56 篇 图书情报与档案管...
    • 23 篇 工商管理
  • 24 篇 法学
    • 19 篇 社会学
  • 18 篇 医学
    • 17 篇 临床医学
    • 12 篇 基础医学(可授医学...
  • 8 篇 教育学
    • 8 篇 教育学
  • 6 篇 经济学
  • 6 篇 农学
  • 3 篇 军事学

主题

  • 34 篇 semantics
  • 22 篇 training
  • 20 篇 deep learning
  • 16 篇 feature extracti...
  • 13 篇 convolution
  • 11 篇 neural networks
  • 11 篇 visualization
  • 10 篇 conferences
  • 10 篇 graph neural net...
  • 9 篇 data models
  • 8 篇 task analysis
  • 8 篇 signal processin...
  • 8 篇 optimization
  • 8 篇 predictive model...
  • 8 篇 decoding
  • 8 篇 codes
  • 7 篇 deep neural netw...
  • 7 篇 three-dimensiona...
  • 7 篇 recommender syst...
  • 7 篇 speech processin...

机构

  • 49 篇 school of softwa...
  • 38 篇 school of big da...
  • 38 篇 key laboratory o...
  • 21 篇 school of softwa...
  • 20 篇 state key labora...
  • 20 篇 school of cyber ...
  • 19 篇 school of comput...
  • 18 篇 national enginee...
  • 17 篇 hubei key labora...
  • 17 篇 national enginee...
  • 17 篇 hubei engineerin...
  • 16 篇 key laboratory o...
  • 16 篇 college of compu...
  • 16 篇 services computi...
  • 15 篇 key laboratory o...
  • 15 篇 beijing advanced...
  • 15 篇 cluster and grid...
  • 15 篇 state key labora...
  • 14 篇 school of inform...
  • 12 篇 peng cheng labor...

作者

  • 15 篇 huang sheng
  • 15 篇 wu qingyao
  • 14 篇 hu shengshan
  • 14 篇 li minghui
  • 13 篇 tan mingkui
  • 13 篇 cai yi
  • 12 篇 shen linlin
  • 11 篇 jin hai
  • 10 篇 zhang leo yu
  • 10 篇 qingyao wu
  • 9 篇 cui bin
  • 9 篇 meng yan
  • 8 篇 hai jin
  • 8 篇 zhou ziqi
  • 7 篇 lü jinhu
  • 7 篇 ling xu
  • 7 篇 minghui li
  • 7 篇 shengshan hu
  • 7 篇 fei dai
  • 7 篇 zhang wentao

语言

  • 562 篇 英文
  • 42 篇 其他
  • 5 篇 中文
检索条件"机构=Key Laboratory of Big Data and Intelligent Robot School of Software Engineering"
608 条 记 录,以下是431-440 订阅
排序:
Asynchronous control for Markov jump systems subject to actuator saturation
Asynchronous control for Markov jump systems subject to actu...
收藏 引用
第33届中国控制与决策会议
作者: Chao Wang Lei Liu Wei Wang Xiaobing Luo Huijin Fan the National Key Laboratory of Science and Technology of Multispectral Information Processing School of Artificial Intelligence and AutomationHuazhong University of Science and Technology the School of Automation Science and Electrical Engineering and the Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University School of Computer Technology and Software Engineering Wuhan Polytechnic
In this paper,the asynchronous controller problem is considered for Markov jump systems(MJSs) subject to actuator *** asynchronous phenomenon between the controller and the plant is addressed by introducing a hidden M... 详细信息
来源: 评论
MetaMask: Revisiting Dimensional Confounder for Self-Supervised Learning
arXiv
收藏 引用
arXiv 2022年
作者: Li, Jiangmeng Qiang, Wenwen Zhang, Yanan Mo, Wenyi Zheng, Changwen Su, Bing Xiong, Hui University of Chinese Academy of Sciences Institute of Software Chinese Academy of Sciences Southern Marine Science and Engineering Guangdong Laboratory Guangzhou China Gaoling School of Artificial Intelligence Renmin University of China China Institute of Software Chinese Academy of Sciences Southern Marine Science and Engineering Guangdong Laboratory Guangzhou China Gaoling School of Artificial Intelligence Renmin University of China Beijing Key Laboratory of Big Data Management and Analysis Methods China Thrust of Artificial Intelligence The Hong Kong University of Science and Technology Guangzhou China Guangzhou HKUST Fok Ying Tung Research Institute China
As a successful approach to self-supervised learning, contrastive learning aims to learn invariant information shared among distortions of the input sample. While contrastive learning has yielded continuous advancemen... 详细信息
来源: 评论
Improving Code Summarization Through Automated Quality Assurance
Improving Code Summarization Through Automated Quality Assur...
收藏 引用
International Symposium on software Reliability engineering (ISSRE)
作者: Yuxing Hu Meng Yan Zhongxin Liu Qiuyuan Chen Bei Wang Key Laboratory of Dependable Service Computing in Cyber Physical Society (Chongqing University) Ministry of Education China School of Big Data and Software Engineering Chongqing University Chongqing China Pengcheng Laboratory Shenzhen China College of Computer Science and Technology Zhejiang University Hangzhou China
The code summarization task aims to generate brief descriptions of source code automatically. It is beneficial for developers to understand source code. However, almost all of current code summarization approaches may... 详细信息
来源: 评论
Non-Gaussian Lagrangian Stochastic Model for Wind Field Simulation in the Surface Layer
收藏 引用
Advances in Atmospheric Sciences 2020年 第1期37卷 90-104页
作者: Chao LIU Li FU Dan YANG David R.MILLER Junming WANG Key Laboratory of Dependable Service Computing in Cyber Physical Society Ministry of Education Chongqing UniversityChongqing 401331China School of Big Data and Software Engineering Chongqing UniversityChongqing 401331China Department of Natural Resources and Environment University of ConnecticutStorrsCT 06268USA Climate and Atmospheric Science Section Illinois State Water SurveyPrairie Research InstituteUniversity of Illinois at Urbana-ChampaignChampaignIL 61820USA
Wind field simulation in the surface layer is often used to manage natural resources in terms of air quality,gene flow(through pollen drift),and plant disease transmission(spore dispersion).Although Lagrangian stochas... 详细信息
来源: 评论
A novel method for driving path planning with spark
TechRxiv
收藏 引用
TechRxiv 2021年
作者: Li, Leixiao Lin, Hao Wan, Jianxiong Wang, Yongsheng Gao, Jing College of Data Science and Application Inner Mongolia University of Technology China School of Computer Science and Engineering Tianjin University of Technology China Inner Mongolia Autonomous Region Engineering and Technology Research Center of Big Data Based Software Service China College of Computer and Information Engineering Inner Mongolia Agricultural University China Inner Mongolia Autonomous Region Key Laboratory of big data research and application for agriculture and animal husbandry China
Efficient and accurate driving path planning can help drivers drive. To solve the problem of low efficiency of traditional heuristic algorithms such as PSO and GA in solving driving path planning, we introduce Excelle... 详细信息
来源: 评论
Identifying topologies and system parameters of uncertaintime-varying delayed complex networks
收藏 引用
Science China(Technological Sciences) 2019年 第1期62卷 94-105页
作者: WANG Xiong GU HaiBo WANG QianYao Lü JinHu LSC Academy of Mathematics and Systems Science Chinese Academy of Sciences School of Mathematical Sciences University of Chinese Academy of Sciences School of Automation Science and Electrical Engineering State Key Laboratory of Software Development Environment and Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University
Node dynamics and network topologies play vital roles in determining the network features and network dynamical *** it is of great theoretical significance and practical value to recover the topology structures and sy... 详细信息
来源: 评论
Rethinking the Sample Relations for Few-Shot Classification
arXiv
收藏 引用
arXiv 2025年
作者: Yin, Guowei Huang, Sheng Huangfu, Luwen Zhang, Yi Zhang, Xiaohong School of Big Data and Software Engineering Chongqing University No.55 Daxuecheng South Rd. Shapingba Chongqing401331 China Ministry of Education Key Laboratory of Dependable Service Computing in Cyber Physical Society Chongqing University No.174 Shazhengjie Shapingba Chongqing400044 China Fowler College of Business San Diego State University San DiegoCA92182 United States San Diego State University San DiegoCA92182 United States AI4Business Lab San Diego State University San DiegoCA92182 United States
Feature quality is paramount for classification performance, particularly in few-shot scenarios. Contrastive learning, a widely adopted technique for enhancing feature quality, leverages sample relations to extract in... 详细信息
来源: 评论
Stabilization of continuous-time Markov/semi-Markov jump linear systems via finite data-rate feedback
arXiv
收藏 引用
arXiv 2021年
作者: Wang, Jingyi Feng, Jianwen Xu, Chen Wu, Xiaoqun Lü, Jinhu College of Mathematics and Statistics Shenzhen University Shenzhen518060 China School of Mathematics and Statistics Hubei Key Laboratory of Computational Science Wuhan University Wuhan China State Key Laboratory of Software Development Environment School of Automation Science and Electrical Engineering Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing China
This paper investigates almost sure exponential stabilization of continuous-time Markov jump linear systems (MJLSs) under communication data-rate constraints by introducing sampling and quantization into the feedback ... 详细信息
来源: 评论
MetAug: Contrastive Learning via Meta Feature Augmentation
arXiv
收藏 引用
arXiv 2022年
作者: Li, Jiangmeng Qiang, Wenwen Zheng, Changwen Su, Bing Xiong, Hui Science & Technology on Integrated Information System Laboratory Institute of Software Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China Guangdong China Gaoling School of Artificial Intelligence Renmin University of China Beijing China Beijing Key Laboratory of Big Data Management and Analysis Methods Beijing China Guangzhou China Department of Computer Science Engineering The Hong Kong University of Science and Technology Hong Kong
What matters for contrastive learning? We argue that contrastive learning heavily relies on informative features, or "hard" (positive or negative) features. Early works include more informative features by a... 详细信息
来源: 评论
Enhancing Pulmonary Nodule Classification performance with TriCaps-RL: A Capsule Network Reinforcement Learning Approach
Journal of Network Intelligence
收藏 引用
Journal of Network Intelligence 2024年 第3期9卷 1441-1459页
作者: Zheng, Guang-Yuan Zhang, Fu-Quan Cheng, Chen Shan, Hong-Tao Soomro, Nouman Qadeer Liu, Yi College of Information Technology Shanghai Jian Qiao University Shanghai201306 China School of Mathematics and Computer Science Yanan University Shaanxi 716000 China School of Computer and Data Science Minjiang University No.200 Xiyuangong Road Fuzhou University Town Fuzhou350108 China Digital Media Art Key Laboratory of Sichuan Province Sichuan Conservatory of Music Chengdu610021 China Fuzhou Technology Innovation Center of intelligent Manufacturing information System Minjiang University Fuzhou350108 China Fujian Province University Fuzhou350300 China College of Business Shanghai Jian Qiao University Shanghai201306 China College of Electronic and Electrical Engineering Shanghai University of Engineering Science Shanghai201620 China Software Department Mehran University of Engineering & Technology Sindh 76062 Pakistan
Distinguishing the manifestations of pulmonary nodules poses a significant challenge in the medical field, demanding the expertise of experienced radiologists. This complexity results in the high cost and inadequacy o... 详细信息
来源: 评论