咨询与建议

限定检索结果

文献类型

  • 1,525 篇 期刊文献
  • 950 篇 会议
  • 1 册 图书

馆藏范围

  • 2,476 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,716 篇 工学
    • 1,383 篇 计算机科学与技术...
    • 752 篇 软件工程
    • 253 篇 电气工程
    • 224 篇 信息与通信工程
    • 160 篇 控制科学与工程
    • 157 篇 生物工程
    • 87 篇 化学工程与技术
    • 71 篇 机械工程
    • 63 篇 生物医学工程(可授...
    • 50 篇 环境科学与工程(可...
    • 49 篇 电子科学与技术(可...
    • 45 篇 光学工程
    • 44 篇 交通运输工程
    • 39 篇 动力工程及工程热...
    • 38 篇 建筑学
    • 38 篇 安全科学与工程
    • 36 篇 土木工程
  • 701 篇 理学
    • 387 篇 数学
    • 192 篇 生物学
    • 152 篇 统计学(可授理学、...
    • 111 篇 物理学
    • 91 篇 化学
    • 52 篇 系统科学
  • 525 篇 管理学
    • 314 篇 管理科学与工程(可...
    • 221 篇 图书情报与档案管...
    • 131 篇 工商管理
  • 128 篇 医学
    • 105 篇 临床医学
    • 67 篇 基础医学(可授医学...
  • 120 篇 经济学
    • 96 篇 应用经济学
  • 73 篇 法学
    • 65 篇 社会学
  • 31 篇 农学
  • 22 篇 教育学
  • 11 篇 文学
  • 2 篇 军事学
  • 1 篇 艺术学

主题

  • 78 篇 semantics
  • 73 篇 deep learning
  • 70 篇 machine learning
  • 62 篇 training
  • 56 篇 feature extracti...
  • 45 篇 task analysis
  • 43 篇 data mining
  • 39 篇 support vector m...
  • 38 篇 graph neural net...
  • 33 篇 knowledge graph
  • 33 篇 predictive model...
  • 31 篇 visualization
  • 31 篇 data models
  • 30 篇 big data
  • 30 篇 computational mo...
  • 27 篇 reinforcement le...
  • 26 篇 convolution
  • 25 篇 classification
  • 24 篇 object detection
  • 24 篇 recommender syst...

机构

  • 444 篇 chinese acad sci...
  • 332 篇 beijing key labo...
  • 311 篇 gaoling school o...
  • 254 篇 univ chinese aca...
  • 228 篇 chinese acad sci...
  • 155 篇 key laboratory o...
  • 134 篇 school of econom...
  • 114 篇 school of inform...
  • 103 篇 univ chinese aca...
  • 102 篇 school of comput...
  • 82 篇 research center ...
  • 79 篇 univ chinese aca...
  • 55 篇 univ chinese aca...
  • 53 篇 chinese acad sci...
  • 51 篇 fujian provincia...
  • 49 篇 key laboratory o...
  • 46 篇 univ nebraska co...
  • 40 篇 university of ch...
  • 37 篇 univ chinese aca...
  • 35 篇 school of comput...

作者

  • 187 篇 wen ji-rong
  • 185 篇 shi yong
  • 147 篇 huang qingming
  • 140 篇 tian yingjie
  • 103 篇 zhao wayne xin
  • 73 篇 xu qianqian
  • 60 篇 wu xindong
  • 54 篇 yang zhiyong
  • 51 篇 qi zhiquan
  • 46 篇 yong shi
  • 46 篇 cao xiaochun
  • 44 篇 dou zhicheng
  • 43 篇 li guorong
  • 42 篇 guo kun
  • 42 篇 niu lingfeng
  • 41 篇 lu zhiwu
  • 41 篇 liu ying
  • 40 篇 li chongxuan
  • 35 篇 long wen
  • 34 篇 zhou kun

语言

  • 2,333 篇 英文
  • 117 篇 其他
  • 22 篇 中文
  • 3 篇 德文
  • 3 篇 法文
  • 1 篇 意大利文
检索条件"机构=Key Laboratory of Big Data and Knowledge Management"
2476 条 记 录,以下是241-250 订阅
排序:
TEMPORAL ALIGNMENT PREDICTION FOR SUPERVISED REPRESENTATION LEARNING AND FEW-SHOT SEQUENCE CLASSIFICATION  10
TEMPORAL ALIGNMENT PREDICTION FOR SUPERVISED REPRESENTATION ...
收藏 引用
10th International Conference on Learning Representations, ICLR 2022
作者: Su, Bing Wen, Ji-Rong Beijing Key Laboratory of Big Data Management and Analysis Methods Gaoling School of Artificial Intelligence Renmin University of China Beijing100872 China
Explainable distances for sequence data depend on temporal alignment to tackle sequences with different lengths and local variances. Most sequence alignment methods infer the optimal alignment by solving an optimizati... 详细信息
来源: 评论
Not All Metrics Are Guilty: Improving NLG Evaluation by Diversifying References
Not All Metrics Are Guilty: Improving NLG Evaluation by Dive...
收藏 引用
2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2024
作者: Tang, Tianyi Lu, Hongyuan Jiang, Yuchen Eleanor Huang, Haoyang Zhang, Dongdong Zhao, Wayne Xin Kocmi, Tom Wei, Furu Gaoling School of Artificial Intelligence Renmin University of China China Microsoft Research Asia China Microsoft China The Chinese University of Hong Kong Hong Kong AIWaves Inc Beijing Key Laboratory of Big Data Management and Analysis Methods China
Most research about natural language generation (NLG) relies on evaluation benchmarks with limited references for a sample, which may result in poor correlations with human judgements. The underlying reason is that on... 详细信息
来源: 评论
Learning Vector-Quantized Item Representation for Transferable Sequential Recommenders  23
Learning Vector-Quantized Item Representation for Transferab...
收藏 引用
2023 World Wide Web Conference, WWW 2023
作者: Hou, Yupeng He, Zhankui McAuley, Julian Zhao, Wayne Xin Gaoling School of Artifcial Intelligence Renmin University of China Beijing China Uc San Diego San DiegoCA United States Beijing Key Laboratory of Big Data Management and Analysis Methods China
Recently, the generality of natural language text has been leveraged to develop transferable recommender systems. The basic idea is to employ pre-trained language models (PLM) to encode item text into item representat...
来源: 评论
Fine-Grained Tuple Transfer for Pipelined Query Execution on CPU-GPU Coprocessor  28th
Fine-Grained Tuple Transfer for Pipelined Query Execution o...
收藏 引用
28th International Conference on database Systems for Advanced Applications, DASFAA 2023
作者: Yang, Zhenhua Pan, Qingfeng Xu, Chen Shanghai Engineering Research Center of Big Data Management East China Normal University Shanghai200062 China Guangxi Key Laboratory of Trusted Software Guilin University of Electronic Technology Guilin541004 China
To leverage the massively parallel capability of GPU for query execution, GPU databases have been studied for over a decade. Recently, researchers proposed to execute queries with both CPU and GPU in a pipelined appro... 详细信息
来源: 评论
Sequential Recommendation with User Causal Behavior Discovery  39
Sequential Recommendation with User Causal Behavior Discover...
收藏 引用
39th IEEE International Conference on data Engineering, ICDE 2023
作者: Wang, Zhenlei Chen, Xu Zhou, Rui Dai, Quanyu Dong, Zhenhua Wen, Ji-Rong Renmin University of China Gaoling School of Artificial Intelligence Beijing China Beijing Key Laboratory of Big Data Management and Analysis Methods Beijing China Noah's Ark Lab Huawei Beijing China
The key of sequential recommendation lies in the accurate item correlation modeling. Previous models infer such information based on item co-occurrences, which may fail to capture the real causal relations, and impact... 详细信息
来源: 评论
Generalized robust loss functions for machine learning
收藏 引用
NEURAL NETWORKS 2024年 171卷 200-214页
作者: Fu, Saiji Wang, Xiaoxiao Tang, Jingjing Lan, Shulin Tian, Yingjie Beijing Univ Posts & Telecommun Sch Econ & Management Beijing 100876 Peoples R China Univ Chinese Acad Sci Sch Math Sci Beijing 100049 Peoples R China Southwestern Univ Finance & Econ Fac Business Adm Sch Business Adm Chengdu 611130 Peoples R China Southwestern Univ Finance & Econ Inst Big Data Chengdu 611130 Peoples R China Univ Chinese Acad Sci Sch Econ & Management Beijing 100190 Peoples R China Chinese Acad Sci Res Ctr Fictitious Econ & Data Sci Beijing 100190 Peoples R China Chinese Acad Sci Key Lab Big Data Min & Knowledge Management Beijing 100190 Peoples R China UCAS MOE Social Sci Lab Digital Econ Forecasts & Policy Beijing 100190 Peoples R China
Loss function is a critical component of machine learning. Some robust loss functions are proposed to mitigate the adverse effects caused by noise. However, they still face many challenges. Firstly, there is currently... 详细信息
来源: 评论
Suppress Content Shift: Better Diffusion Features via Off-the-Shelf Generation Techniques  38
Suppress Content Shift: Better Diffusion Features via Off-th...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Meng, Benyuan Xu, Qianqian Wang, Zitai Yang, Zhiyong Cao, Xiaochun Huang, Qingming Institute of Information Engineering CAS China School of Cyber Security University of Chinese Academy of Sciences China Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS China Peng Cheng Laboratory China School of Computer Science and Tech. University of Chinese Academy of Sciences China School of Cyber Science and Tech. Shenzhen Campus of Sun Yat-sen University China Key Laboratory of Big Data Mining and Knowledge Management CAS China
Diffusion models are powerful generative models, and this capability can also be applied to discrimination. The inner activations of a pre-trained diffusion model can serve as features for discriminative tasks, namely...
来源: 评论
Not All Diffusion Model Activations Have Been Evaluated as Discriminative Features  38
Not All Diffusion Model Activations Have Been Evaluated as D...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Meng, Benyuan Xu, Qianqian Wang, Zitai Cao, Xiaochun Huang, Qingming Institute of Information Engineering CAS China School of Cyber Security University of Chinese Academy of Sciences China Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS China Peng Cheng Laboratory China School of Cyber Science and Tech. Shenzhen Campus of Sun Yat-sen University China School of Computer Science and Tech. University of Chinese Academy of Sciences China Key Laboratory of Big Data Mining and Knowledge Management CAS China
Diffusion models are initially designed for image generation. Recent research shows that the internal signals within their backbones, named activations, can also serve as dense features for various discriminative task...
来源: 评论
PromptGCN: Bridging Subgraph Gaps in Lightweight GCNs
arXiv
收藏 引用
arXiv 2024年
作者: Ji, Shengwei Tian, Yujie Liu, Fei Li, Xinlu Wu, Le The School of Artificial Intelligence and Big Data Hefei University Hefei China The School of Computer Science and Information Engineering Hefei University of Technology Hefei China The Key Laboratory of Knowledge Engineering with Big Data Ministry of Education China
Graph Convolutional Networks (GCNs) are widely used in graph-based applications, such as social networks and recommendation systems. Nevertheless, large-scale graphs or deep aggregation layers in full-batch GCNs consu... 详细信息
来源: 评论
Each Fake News is Fake in its Own Way: An Attribution Multi-Granularity Benchmark for Multimodal Fake News Detection  39
Each Fake News is Fake in its Own Way: An Attribution Multi-...
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Guo, Hao Ma, Zihan Zeng, Zhi Luo, Minnan Zeng, Weixin Tang, Jiuyang Zhao, Xiang Laboratory for Big Data and Decision Nation University of Defense Technology China School of Computer Science and Technology Xi’an Jiaotong University China Ministry of Education Key Laboratory of Intelligent Networks and Network Security Xi’an Jiaotong University China Shaanxi Province Key Laboratory of Big Data Knowledge Engineering Xi’an Jiaotong University China
Social platforms, while facilitating access to information, have also become saturated with a plethora of fake news, resulting in negative consequences. Automatic multimodal fake news detection is a worthwhile pursuit...
来源: 评论