咨询与建议

限定检索结果

文献类型

  • 934 篇 会议
  • 430 篇 期刊文献

馆藏范围

  • 1,364 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 983 篇 工学
    • 404 篇 控制科学与工程
    • 352 篇 软件工程
    • 321 篇 计算机科学与技术...
    • 276 篇 机械工程
    • 138 篇 电气工程
    • 124 篇 仪器科学与技术
    • 113 篇 电子科学与技术(可...
    • 97 篇 信息与通信工程
    • 67 篇 航空宇航科学与技...
    • 56 篇 交通运输工程
    • 46 篇 动力工程及工程热...
    • 38 篇 生物工程
    • 33 篇 材料科学与工程(可...
    • 30 篇 力学(可授工学、理...
    • 25 篇 光学工程
    • 25 篇 化学工程与技术
    • 24 篇 生物医学工程(可授...
    • 24 篇 安全科学与工程
    • 23 篇 土木工程
    • 16 篇 建筑学
  • 439 篇 理学
    • 269 篇 数学
    • 153 篇 系统科学
    • 87 篇 物理学
    • 69 篇 统计学(可授理学、...
    • 41 篇 生物学
    • 24 篇 化学
  • 195 篇 管理学
    • 175 篇 管理科学与工程(可...
    • 34 篇 工商管理
    • 16 篇 图书情报与档案管...
  • 18 篇 军事学
  • 16 篇 经济学
    • 16 篇 应用经济学
  • 16 篇 医学
  • 12 篇 法学
  • 9 篇 农学
  • 3 篇 艺术学
  • 1 篇 教育学

主题

  • 33 篇 mathematical mod...
  • 30 篇 feature extracti...
  • 28 篇 optimization
  • 23 篇 uncertainty
  • 22 篇 robustness
  • 20 篇 stability analys...
  • 20 篇 state estimation
  • 19 篇 legged locomotio...
  • 19 篇 trajectory
  • 19 篇 training
  • 17 篇 target tracking
  • 17 篇 accuracy
  • 16 篇 object detection
  • 16 篇 force
  • 16 篇 planning
  • 16 篇 attitude control
  • 16 篇 sliding mode con...
  • 16 篇 robot kinematics
  • 15 篇 deep learning
  • 15 篇 three-dimensiona...

机构

  • 282 篇 school of automa...
  • 75 篇 key laboratory o...
  • 56 篇 state key labora...
  • 54 篇 key laboratory o...
  • 52 篇 shaanxi key labo...
  • 48 篇 key laboratory o...
  • 42 篇 school of automa...
  • 37 篇 state key labora...
  • 37 篇 shaanxi key labo...
  • 37 篇 key laboratory o...
  • 35 篇 state key labora...
  • 34 篇 beijing institut...
  • 28 篇 key laboratory o...
  • 27 篇 shaanxi key labo...
  • 25 篇 school of automa...
  • 25 篇 key laboratory o...
  • 23 篇 key laboratory o...
  • 23 篇 science and tech...
  • 23 篇 national key lab...
  • 22 篇 hubei key labora...

作者

  • 93 篇 chen jie
  • 79 篇 jie chen
  • 76 篇 junzheng wang
  • 50 篇 yuanqing xia
  • 47 篇 xiangdong liu
  • 43 篇 jian sun
  • 41 篇 mengyin fu
  • 34 篇 liping yan
  • 33 篇 hongbin ma
  • 30 篇 sun jian
  • 29 篇 ding liu
  • 27 篇 jing li
  • 27 篇 zhen li
  • 26 篇 qiang huang
  • 26 篇 wang junzheng
  • 25 篇 xin bin
  • 25 篇 liu xiangdong
  • 24 篇 chen chen
  • 24 篇 fang hao
  • 23 篇 fu mengyin

语言

  • 1,295 篇 英文
  • 63 篇 中文
  • 7 篇 其他
检索条件"机构=Key Laboratory of Complex System Intelligent Control and Decision"
1364 条 记 录,以下是1241-1250 订阅
排序:
Simulation scenario design method and its application based on conceptual models of mission space
收藏 引用
Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology) 2011年 第SUPPL. 1期42卷 1096-1100页
作者: Gao, Bing-Zhi Wu, Di Ge, Xiong Ban, Xiao-Juan School of Computer Science and Electronics University of Science and Technology Beijing Beijing 100083 China Key Laboratory of Complex System Intelligent Control and Decision of Education Ministry Beijing Institute of Technology Beijing 100081 China
A simulation system scenario design method was proposed for the space-based information simulation system supporting anti-earthquake rescue. This method is based on the conceptual models of the mission space method in... 详细信息
来源: 评论
A class of uncertain chaotic systems using the fast terminal sliding mode control
A class of uncertain chaotic systems using the fast terminal...
收藏 引用
Chinese control Conference (CCC)
作者: Bai Yongqiang A Lata Li Xiaofang School of Automation Key Laboratory of Complex System Intelligent Control and Decision Ministry of Education Beijing Institute of Technology Beijing China Institute of State 157 factory Chendu China
Problems of uncertain chaotic systems with fast terminal sliding mode control are discoursed. Aim at the uncertainty parameters of chaotic systems, proposed a fast terminal sliding mode control method, and the corresp... 详细信息
来源: 评论
Event-triggered Extended Kalman Filter for UAV Monitoring system
Event-triggered Extended Kalman Filter for UAV Monitoring Sy...
收藏 引用
Data Driven control and Learning systems (DDCLS)
作者: Yunge Zang Yan Li Yuting Duan Xiangyu Li Xi Chang Zhen Li Beijing Aerospace Automatic Control Institute Beijing P. R. China National Key Laboratory of Science and Technology on Aerospace Intelligence Control Beijing P. R. China Beijing Aerospace Institute for Metrology and Measurement Technology Beijing P. R. China Key Laboratory for Intelligent Control … Decision on Complex Systems School of Automation Beijing Institute of Technology Beijing China
To facilitate ground station monitoring and command uploading, unmanned aerial vehicles (UAVs) need to frequently exchange individual state data between units. However, this results in a significant usage of communica...
来源: 评论
Research on Infrared Image Processing Algorithm of Generator Carbon Brush Based on Adaptive Stochastic Resonance Array
Research on Infrared Image Processing Algorithm of Generator...
收藏 引用
2021 China Automation Congress, CAC 2021
作者: Jiao, Shangbin Huang, Weichao Geng, Bo Zhang, Youmin Wu, Xiaohui Wu, Pengyue Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing Xi 'an University of Technology Xi'an710048 China Department of Mechanical Industrial and Aerospace Engineering Concordia University MontrealQCH3G 1M8 Canada Huaneng Weihai Power Generation Co. Ltd Weihai264200 China Xi'an Thermal Power Research Institute Co. Ltd. Xi'an710048 China
The safe and stable operation of the generator set is related to the national economy and people's livelihood. As an important part of generator excitation system, carbon brush and slip ring temperature monitoring... 详细信息
来源: 评论
Enhanced Data Augmentation for Bearing Fault Diagnosis by Using a Spectral Flow Model
Enhanced Data Augmentation for Bearing Fault Diagnosis by Us...
收藏 引用
Prognostics and system Health Management Conference (PHM)
作者: Xiaoyun Gong Mengxuan Hao Chuan Li Wenliao Du Yixiang Huang Henan International Joint Laboratory of Complex Mechanical Equipment Intelligent Monitoring and Control Zhengzhou University of Light Industry Zhengzhou China Research Center for System Health Maintenance Chongqing Technology and Business University Chongqing China The State Key Laboratory of Mechanical System and Vibration Shanghai Jiao Tong University Shanghai China
While existing flow-based models have the potential for data enhancement and intelligent fault diagnosis of bearings, these methods are mainly based on the time domain to learn features. In general, time-domain and fr... 详细信息
来源: 评论
An Adaptive Disturbance Rejection controller for Artificial Pancreas
收藏 引用
IFAC-PapersOnLine 2020年 第2期53卷 16372-16379页
作者: Deheng Cai Wei Liu Eyal Dassau Francis J. Doyle Iii Xiaoling Cai Junzheng Wang Linong Ji Dawei Shi State Key Laboratory of Intelligent Control and Decision of Complex Systems School of Automation Beijing Institute of Technology Beijing 100081 China Department of Endocrine and Metabolism Peking University People’s Hospital Beijing China. Harvard John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA.
Artificial pancreas (AP) systems are designed to automate glucose management for patients with type 1 diabetes. In this work, we propose an adaptive disturbance rejection control approach for AP systems to achieve saf... 详细信息
来源: 评论
Distance- And velocity-based collision avoidance for time-varying formation control of second-order multi-agent systems
收藏 引用
IEEE Transactions on Circuits and systems II: Express Briefs 2021年 第4期68卷 1253-1257页
作者: Pang, Zhong-Hua Zheng, Chang-Bing Sun, Jian Han, Qing-Long Liu, Guo-Ping Key Laboratory of Fieldbus Technology and Automation of Beijing North China University of Technology Beijing100144 China State Key Laboratory of Intelligent Control and Decision of Complex Systems School of Automation Beijing Institute of Technology Beijing100081 China School of Software and Electrical Engineering Swinburne University of Technology MelbourneVIC3122 Australia Department of Artificial Intelligence and Automation Wuhan University Wuhan430072 China
This brief addresses the time-varying formation control problem with collision avoidance for second-order multi-agent systems. By taking both distances and velocities between agents into account, a novel collision avo... 详细信息
来源: 评论
Early Forest Fire Segmentation Based on Deep Learning
Early Forest Fire Segmentation Based on Deep Learning
收藏 引用
Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS), CAA Symposium on
作者: Mengna Li Youmin Zhang Jing Xin Lingxia Mu Ziquan Yu Han Liu Guo Xie Shangbin Jiao Yingmin Yi Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing Xi’an University of Technology Xi’an Shaanxi China Concordia University Montreal Quebec Canada College of Automation Engineering Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
Fire segmentation is very important for fire rescue. It can make firefighters get the information on fire area, spread direction and so on, and then help them make quick and effective fire-fighting plan. Therefore, th... 详细信息
来源: 评论
State Estimation of Finite-State Hidden Markov Models Subject to Stochastically Event-triggered Measurements
State Estimation of Finite-State Hidden Markov Models Subjec...
收藏 引用
IEEE Annual Conference on decision and control
作者: Wentao Chen Junzheng Wang Ling Shi Dawei Shi State Key Laboratory of Intelligent Control and Decision of Complex Systems School of Automation Beijing Institute of Technology Beijing 100081 P.R. China Department of Electronic and Computer Engineering Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
We consider the event-triggered state estimation of a finite-state hidden Markov model with a general stochastic event-triggering condition. Utilizing the change of probability measure approach and the event-triggered... 详细信息
来源: 评论
Identify Influential Nodes in complex Networks: A K-Orders Entropy-Based Method
SSRN
收藏 引用
SSRN 2023年
作者: Wu, Yali Dong, Ang Ren, Yuanguang Jiang, Qiaoyong Department of Information and Control Engineering Xi’an University of Technology Xi’an710048 China Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing Xi’an University of Technology Xi’an710048 China The School of Computer Science and Engineering Xi’an University of Technology Xi’an710048 China
Identifying influential nodes is a recognized challenge for the tremendous number of nodes in complex networks. Most of proposed methods detect the influential nodes based on their degree or topological location, whic... 详细信息
来源: 评论