This book constitutes the refereed proceedings of the International Conference on the Applications of Evolutionary Computation, EvoApplications 2012, held in Málaga, Spain, in April 2012, colocated with the Evo* ...
详细信息
ISBN:
(数字)9783642291784
ISBN:
(纸本)9783642291777
This book constitutes the refereed proceedings of the International Conference on the Applications of Evolutionary Computation, EvoApplications 2012, held in Málaga, Spain, in April 2012, colocated with the Evo* 2012 events EuroGP, EvoCOP, EvoBIO, and EvoMUSART. The 54 revised full papers presented were carefully reviewed and selected from 90 submissions. EvoApplications 2012 consisted of the following 11 tracks: EvoCOMNET (nature-inspired techniques for telecommunication networks and other parrallel and distributed systems), Evocomplex (algorithms and complexsystems), EvoFIN (evolutionary and natural computation in finance and economics), EvoGAMES (bio-inspired algorithms in games), EvoHOT (bio-inspired heuristics for design automation), EvoIASP (evolutionary computation in image analysis and signal processing), EvoNUM (bio-inspired algorithms for continuous parameter optimization), EvoPAR (parallel implementation of evolutionary algorithms), EvoRISK (computational intelligence for risk management, security and defense applications), EvoSTIM (nature-inspired techniques in scheduling, planning, and timetabling), and EvoSTOC (evolutionary algorithms in stochastic and dynamic environments).
This book constitutes the refereed proceedings of the 6th International Conference on Brain Inspired Cognitive systems, BICS 2013, held in Beijing, China in June 2013. The 45 high-quality papers presented were careful...
详细信息
ISBN:
(数字)9783642387869
ISBN:
(纸本)9783642387852
This book constitutes the refereed proceedings of the 6th International Conference on Brain Inspired Cognitive systems, BICS 2013, held in Beijing, China in June 2013. The 45 high-quality papers presented were carefully reviewed and selected from 68 submissions. BICS 2013 aims to provide a high-level international forum for scientists, engineers, and educators to present the state of the art of brain inspired cognitive systems research and applications in diverse fields.
作者:
Xin ZhangHongzhi FengM. Shamim HossainYinzhuo ChenHongbo WangYuyu YinHangzhou Dianzi University
China Key Laboratory of Complex Systems Modeling and Simulation Ministry of Education China Zhoushan Tongbo Marine Electronic Information Research Institute Hangzhou Dianzi University China and Yunnan Key Laboratory of Service Computing Yunnan University of Finance and Economics China Hangzhou Dianzi University
China Department of Software Engineering
College of Computer and Information Sciences King Saud University Saudi Arabia Hangzhou Dianzi University
China Key Laboratory of Complex Systems Modeling and Simulation Ministry of Education China and Zhoushan Tongbo Marine Electronic Information Research Institute Hangzhou Dianzi University China
Action Quality Assessment (AQA) has become crucial in video analysis, finding wide applications in various domains, such as healthcare and sports. A significant challenge faced by AQA is the background bias due to the...
详细信息
Action Quality Assessment (AQA) has become crucial in video analysis, finding wide applications in various domains, such as healthcare and sports. A significant challenge faced by AQA is the background bias due to the dominance of the background in videos. Especially, the background bias tends to overshadow subtle foreground differences, which is crucial for precise action evaluation. To address the background bias issue, we propose a novel data augmentation method named Scaled Background Swap. Firstly, the background regions between different video samples are swapped to guide models focus toward the dynamic foreground regions and mitigate its sensitivity to the background during training. Secondly, the video’s foreground region is up-scaled to further enhance models’ attention to the critical foreground action information for AQA tasks. In particular, the proposed Scaled Background Swap method can effectively improve models’ accuracy and generalization by prioritizing foreground motion and swapping backgrounds. It can be flexibly applied with various video analysis models. Extensive experiments on AQA benchmarks demonstrate that Scaled Background Swap method achieves better performance than baselines. Specifically, the Spearman’s rank correlation on datasets AQA-7 and MTL-AQA reaches 0.8870 and 0.9526, respectively. The code is available at: https://***/Emy-cv/Scaled-Background Swap.
暂无评论