咨询与建议

限定检索结果

文献类型

  • 110 篇 期刊文献
  • 71 篇 会议

馆藏范围

  • 181 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 124 篇 工学
    • 89 篇 计算机科学与技术...
    • 72 篇 软件工程
    • 33 篇 信息与通信工程
    • 23 篇 电气工程
    • 22 篇 光学工程
    • 18 篇 生物工程
    • 17 篇 控制科学与工程
    • 14 篇 电子科学与技术(可...
    • 14 篇 生物医学工程(可授...
    • 11 篇 化学工程与技术
    • 6 篇 机械工程
    • 5 篇 动力工程及工程热...
    • 5 篇 建筑学
    • 5 篇 土木工程
    • 3 篇 力学(可授工学、理...
    • 3 篇 仪器科学与技术
    • 3 篇 网络空间安全
  • 75 篇 理学
    • 44 篇 数学
    • 23 篇 生物学
    • 20 篇 物理学
    • 13 篇 统计学(可授理学、...
    • 12 篇 化学
    • 4 篇 系统科学
  • 23 篇 管理学
    • 16 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 5 篇 工商管理
  • 8 篇 医学
    • 7 篇 基础医学(可授医学...
    • 6 篇 临床医学
    • 4 篇 药学(可授医学、理...
  • 5 篇 农学
  • 4 篇 法学
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 艺术学

主题

  • 10 篇 training
  • 9 篇 feature extracti...
  • 8 篇 convolution
  • 8 篇 semantics
  • 6 篇 computer archite...
  • 5 篇 semantic segment...
  • 5 篇 signal processin...
  • 5 篇 optimization
  • 5 篇 multiobjective o...
  • 4 篇 deep neural netw...
  • 4 篇 image segmentati...
  • 4 篇 neural networks
  • 3 篇 object detection
  • 3 篇 noise measuremen...
  • 3 篇 training data
  • 3 篇 three-dimensiona...
  • 3 篇 transformers
  • 3 篇 laboratories
  • 3 篇 contrastive lear...
  • 3 篇 computational mo...

机构

  • 13 篇 school of artifi...
  • 9 篇 xinjiang key lab...
  • 9 篇 school of comput...
  • 9 篇 key laboratory o...
  • 9 篇 school of intell...
  • 8 篇 school of comput...
  • 6 篇 key laboratory o...
  • 6 篇 key laboratory o...
  • 6 篇 artificial intel...
  • 5 篇 the key laborato...
  • 5 篇 institute of art...
  • 5 篇 department of el...
  • 5 篇 province key lab...
  • 4 篇 key laboratory o...
  • 4 篇 information mate...
  • 3 篇 information mate...
  • 3 篇 key laboratory o...
  • 3 篇 tianjin key labo...
  • 3 篇 state key labora...
  • 3 篇 beijing city key...

作者

  • 16 篇 li chenglong
  • 14 篇 zhang xingyi
  • 14 篇 tang jin
  • 10 篇 tian ye
  • 8 篇 yang shangshang
  • 7 篇 luo bin
  • 6 篇 jin yaochu
  • 6 篇 su yansen
  • 5 篇 zhang ling
  • 5 篇 xingyi zhang
  • 5 篇 he cheng
  • 5 篇 he liang
  • 5 篇 fang zhihua
  • 5 篇 lei qu
  • 4 篇 liang he
  • 4 篇 ye tian
  • 4 篇 zhao liquan
  • 4 篇 tu zhengzheng
  • 4 篇 huang zhixiang
  • 4 篇 liu zhengyi

语言

  • 141 篇 英文
  • 34 篇 其他
  • 6 篇 中文
检索条件"机构=Key Laboratory of Computation Intelligence and Signal Processing"
181 条 记 录,以下是131-140 订阅
排序:
Interactive prototype learning and self-learning for few-shot medical image segmentation
收藏 引用
Artificial intelligence in medicine 2025年 167卷
作者: Yuhui Song Chenchu Xu Boyan Wang Xiuquan Du Jie Chen Yanping Zhang Shuo Li School of Computer Science and Technology Anhui University 230601 Hefei China Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education Anhui University 230601 Hefei China. Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education Anhui University 230601 Hefei China Institute of Artificial Intelligence Hefei Comprehensive National Science Center 230051 Hefei China. Electronic address: cxu332@***. Department of Computer Science and Technology Tsinghua University 100084 Beijing China. Electronic address: wby000000@***. School of Engineering Case Western Reserve University 44106 Cleveland United States.
Few-shot learning alleviates the heavy dependence of medical image segmentation on large-scale labeled data, but it shows strong performance gaps when dealing with new tasks compared with traditional deep learning. Ex... 详细信息
来源: 评论
3R: Word and Phoneme Edition based Data Augmentation for Lexical Punctuation Prediction
3R: Word and Phoneme Edition based Data Augmentation for Lex...
收藏 引用
International Conference on computational intelligence and Security
作者: Aihua Zheng Naipeng Ye Xiao Wang Xiao Song Key Lab of Intelligent Computing and Signal Processing of Ministry of Education Hefei China Peking University Shenzhen Institute Shenzhen China Anhui Provincial Key Laboratory of Multimodal Cognitive Computation School of Computer Science and Technology Anhui University Hefei China
Existing Lexical Punctuation Prediction methods are mainly trained on the standard clean data while losing the generalization in practical automatic speech recognition (ASR) system with ubiquitous transcription errors... 详细信息
来源: 评论
MSCIAIG-Net: Multi-scale spatial-channel interactive attention and interpretable guidance for fine-grained ship classification and visual inference network in remote sensing images
收藏 引用
Engineering Applications of Artificial intelligence 2025年 157卷
作者: Chengqiang Zhao Shijie Chen Jiashu Zhang Sichuan Province Key Laboratory of Signal and Information Processing Southwest Jiaotong University Chengdu 611756 China School of Information Science and Technology Southwest Jiaotong University Chengdu 611756 China School of Engineering and Physics Science Heriot-Watt University Edinburgh EH144AS UK School of Computing and Artificial Intelligence Southwest Jiaotong University Chengdu 611756 China
Fine-grained ship classification (FGSC) in remote sensing images (RSI) with high visual similarity is becoming increasingly important in civil and military applications involving ship monitoring. Existing studies pred...
来源: 评论
Let's play music: Audio-driven performance video generation
arXiv
收藏 引用
arXiv 2020年
作者: Zhu, Hao Li, Yi Zhu, Feixia Zheng, Aihua He, Ran Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education School of Computer Science and Technology Anhui University Hefei China CASIA Beijing China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing China Center for Excellence in Brain Science and Intelligence Technology CAS Beijing China
We propose a new task named Audio-driven Performance Video Generation (APVG), which aims to synthesize the video of a person playing a certain instrument guided by a given music audio clip. It is a challenging task to... 详细信息
来源: 评论
Two-Stream Graph Convolutional Network for Intra-oral Scanner Image Segmentation
arXiv
收藏 引用
arXiv 2022年
作者: Zhao, Yue Zhang, Lingming Liu, Yang Meng, Deyu Cui, Zhiming Gao, Chenqiang Gao, Xinbo Lian, Chunfeng Shen, Dinggang Chongqing University of Posts and Telecommunications School of Communication and Information Engineering Chongqing400065 China The Chongqing Key Laboratory of Signal and Information Processing Chongqing400065 China Department of Orthodontics Stomatological Hospital of Chongqing Medical University Chongqing401147 China Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences Chongqing401147 China Faculty of Information Technology Macau University of Science and Technology China School of Mathematics and Statistics Xi'an Jiaotong University Xian710049 China School of Biomedical Engineering ShanghaiTech University Shanghai201210 China Shanghai United Imaging Intelligence Co. Ltd. Shanghai200030 China The School of Computer Science The University of Hong Kong 999077 Hong Kong School of Computer Science and Technology Chongqing University of Posts and Telecommunications Chongqing400065 China
Precise segmentation of teeth from intra-oral scanner images is an essential task in computer-aided orthodontic surgical planning. The state-of-the-art deep learning-based methods often simply concatenate the raw geom... 详细信息
来源: 评论
Multi-Category Fusion Contrastive Learning with Core Data Selection for Robust RGB Image-based Dental Caries Classification
收藏 引用
Information Fusion 2025年 124卷
作者: Peiliang Zhang Yaru Chen Yunjiong Liu Chao Che Yongjun Zhu Key Laboratory of Advanced Design and Intelligent Computing (Dalian University) Ministry of Education Dalian 116622 China School of Computer Science and Artificial Intelligence Wuhan University of Technology Wuhan 430070 China Department of Library and Information Science Yonsei University Seoul 03722 Republic of Korea Centre for Vision Speech and Signal Processing (CVSSP) University of Surrey Surrey GU2 7NA United Kingdom School of Software Engineering Dalian University Dalian 116622 China
Dental caries represents one of the most prevalent diseases affecting humankind, particularly among adolescent populations. RGB images offer a convenient and cost-effective method for dental caries detection. However,...
来源: 评论
New Framework for Code-Mapping-based Reversible Data Hiding in JPEG Images
arXiv
收藏 引用
arXiv 2020年
作者: Du, Yang Yin, Zhaoxia Key Lab of Intelligent Computing and Signal Processing of Ministry of Education School of Computer Science and Technology Anhui University Hefei230601 China Anhui Key Laboratory of Multimodal Cognitive Computation School of Computer Science and Technology Anhui University Hefei230601 China School of Communication & Electronic Engineering East China Normal University Shanghai200241 China
Code mapping (CM) is an efficient technique for reversible data hiding (RDH) in JPEG images, which embeds data by constructing a mapping relationship between the used and unused codes in the JPEG bitstream. This study... 详细信息
来源: 评论
Correction to: Enhancing cyber defense strategies with discrete multi-dimensional Z-numbers: a multi-attribute decision-making approach
收藏 引用
Complex & Intelligent Systems 2025年 第7期11卷 1-1页
作者: Yao, Aiting Huang, Chen Zhang, Weiqi Dong, Chengzu Lu, Meiqu Mao, Junjun Liu, Xiao Li, Xuejun Anhui Provincial International Joint Research Center for Advanced Technology in Medical Imaging School of Computer Science and Technology Anhui University Hefei China AI Techplus Pty Ltd Organization Melbourne Australia School of Information Technology Deakin University Geelong Australia School of Data Science Lingnan University Hongkong China School of Artificial Intelligence Guangxi Minzu University Nanning China Key Laboratory of Intelligent Computing and Signal Processing Ministry of Education Hefei China
来源: 评论
Evolving multi-resolution pooling CNN for monaural singing voice separation
arXiv
收藏 引用
arXiv 2020年
作者: Yuan, Weitao Dong, Bofei Wang, Shengbei Unoki, Masashi Wang, Wenwu Tianjin Key Laboratory of Autonomous Intelligence Technology and Systems School of Computer Science and Technology Tianjin Polytechnic University Tianjin China School of Information Science Japan Advanced Institute of Science and Technology Japan Centre for Vision Speech and Signal Processing University of Surrey Guildford United Kingdom
Monaural Singing Voice Separation (MSVS) is a challenging task and has been studied for decades. Deep neural networks (DNNs) are the current state-of-the-art methods for MSVS. However, the existing DNNs are often desi... 详细信息
来源: 评论
Self-grouping convolutional neural networks
arXiv
收藏 引用
arXiv 2020年
作者: Guo, Qingbei Wu, Xiao-Jun Kittler, Josef Feng, Zhiquan Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence Jiangnan University Wuxi214122 China Shandong Provincial Key Laboratory of Network based Intelligent Computing University of Jinan Jinan250022 China Centre for Vision Speech and Signal Processing University of Surrey GuildfordGU2 7XH United Kingdom
Although group convolution operators are increasingly used in deep convolutional neural networks to improve the computational efficiency and to reduce the number of parameters, most existing methods construct their gr... 详细信息
来源: 评论