咨询与建议

限定检索结果

文献类型

  • 105 篇 期刊文献
  • 70 篇 会议

馆藏范围

  • 175 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 122 篇 工学
    • 88 篇 计算机科学与技术...
    • 74 篇 软件工程
    • 32 篇 信息与通信工程
    • 23 篇 电气工程
    • 22 篇 光学工程
    • 18 篇 生物工程
    • 17 篇 控制科学与工程
    • 14 篇 生物医学工程(可授...
    • 12 篇 电子科学与技术(可...
    • 11 篇 化学工程与技术
    • 6 篇 机械工程
    • 5 篇 建筑学
    • 5 篇 土木工程
    • 3 篇 仪器科学与技术
    • 3 篇 动力工程及工程热...
    • 3 篇 网络空间安全
  • 72 篇 理学
    • 43 篇 数学
    • 23 篇 生物学
    • 18 篇 物理学
    • 13 篇 统计学(可授理学、...
    • 11 篇 化学
    • 4 篇 系统科学
  • 24 篇 管理学
    • 17 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 6 篇 工商管理
  • 8 篇 医学
    • 7 篇 基础医学(可授医学...
    • 6 篇 临床医学
    • 4 篇 药学(可授医学、理...
  • 5 篇 农学
  • 4 篇 法学
    • 2 篇 社会学
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 艺术学

主题

  • 10 篇 training
  • 8 篇 convolution
  • 8 篇 semantics
  • 8 篇 feature extracti...
  • 5 篇 semantic segment...
  • 5 篇 computer archite...
  • 5 篇 signal processin...
  • 5 篇 optimization
  • 5 篇 multiobjective o...
  • 4 篇 deep neural netw...
  • 4 篇 image segmentati...
  • 4 篇 neural networks
  • 3 篇 object detection
  • 3 篇 noise measuremen...
  • 3 篇 training data
  • 3 篇 three-dimensiona...
  • 3 篇 transformers
  • 3 篇 laboratories
  • 3 篇 control systems
  • 3 篇 genetic algorith...

机构

  • 13 篇 school of artifi...
  • 9 篇 xinjiang key lab...
  • 9 篇 school of comput...
  • 9 篇 key laboratory o...
  • 9 篇 school of intell...
  • 7 篇 school of comput...
  • 6 篇 key laboratory o...
  • 6 篇 artificial intel...
  • 5 篇 the key laborato...
  • 5 篇 institute of art...
  • 5 篇 department of el...
  • 5 篇 key laboratory o...
  • 5 篇 province key lab...
  • 4 篇 key laboratory o...
  • 4 篇 information mate...
  • 4 篇 information mate...
  • 3 篇 information mate...
  • 3 篇 key laboratory o...
  • 3 篇 tianjin key labo...
  • 3 篇 beijing city key...

作者

  • 16 篇 li chenglong
  • 15 篇 zhang xingyi
  • 14 篇 tang jin
  • 11 篇 tian ye
  • 9 篇 yang shangshang
  • 7 篇 jin yaochu
  • 6 篇 zhang ling
  • 6 篇 luo bin
  • 6 篇 su yansen
  • 5 篇 xingyi zhang
  • 5 篇 he cheng
  • 5 篇 he liang
  • 5 篇 fang zhihua
  • 5 篇 lei qu
  • 4 篇 liang he
  • 4 篇 ye tian
  • 4 篇 zhao liquan
  • 4 篇 tu zhengzheng
  • 4 篇 huang zhixiang
  • 4 篇 liu zhengyi

语言

  • 156 篇 英文
  • 13 篇 其他
  • 6 篇 中文
检索条件"机构=Key Laboratory of Computation Intelligence and Signal Processing"
175 条 记 录,以下是11-20 订阅
排序:
Imperceptible and Sparse Adversarial Attacks via a Dual-Population-Based Constrained Evolutionary Algorithm
IEEE Transactions on Artificial Intelligence
收藏 引用
IEEE Transactions on Artificial intelligence 2023年 第2期4卷 268-281页
作者: Tian, Ye Pan, Jingwen Yang, Shangshang Zhang, Xingyi He, Shuping Jin, Yaochu Anhui University Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education Institutes of Physical Science and Information Technology Hefei230601 China Hefei Comprehensive National Science Center Institute of Artificial Intelligence Hefei230088 China Anhui University School of Computer Science and Technology Hefei230601 China Anhui University Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education School of Artificial Intelligence Hefei230601 China Anhui University Anhui Engineering Laboratory of Human-Robot Integration System and Intelligent Equipment School of Electrical Engineering and Automation Hefei230601 China Bielefeld University Faculty of Technology Bielefeld33619 Germany
The sparse adversarial attack has attracted increasing attention due to the merit of a low attack cost via changing a small number of pixels. However, the generated adversarial examples are easily detected in vision s... 详细信息
来源: 评论
Improving Speaker Verification Back-End with Graph Neural Networks
收藏 引用
Journal of Shanghai Jiaotong University (Science) 2025年 1-9页
作者: Chen, Jinfeng Fang, Zhihua He, Liang School of Computer Science and Technology Xinjiang University Urumqi830017 China Xinjiang Key Laboratory of Signal Detection and Processing Urumqi830017 China School of Intelligence Science and Technology Xinjiang University Urumqi830017 China Department of Electronic Engineering Beijing National Research Center for Information Science and Technology Tsinghua University Beijing100084 China
Currently, research on speaker verification tasks is primarily concentrated on enhancing deep speaker models to extract high-quality speaker embeddings. Nevertheless, this speaker embeddings can be regarded as potenti... 详细信息
来源: 评论
Anomalous Sound Detection Using Time-Frequency Feature and Mixbatch
收藏 引用
Journal of Shanghai Jiaotong University (Science) 2025年 1-8页
作者: Huang, Shun Zhang, Yunxiang Fang, Zhihua Tang, Minrui Xu, Ruifeng He, Liang School of Computer Science and Technology Xinjiang University Urumqi830017 China Xinjiang Key Laboratory of Signal Detection and Processing Urumqi830017 China School of Intelligence Science and Technology Xinjiang University Urumqi830017 China Department of Electronic Engineering Beijing National Research Center for Information Science and Technology Tsinghua University Beijing100084 China
The sound emitted by machines under abnormal working conditions exhibits various frequency patterns. Currently, the most advanced anomalous sound detection (ASD) approach is to apply a multi-head self-attention mechan... 详细信息
来源: 评论
Dual-Path Spectrogram Refinement Network for Robust Speaker Verification
收藏 引用
Journal of Shanghai Jiaotong University (Science) 2025年 1-9页
作者: Wang, Zonghui Fang, Zhihua He, Liang School of Computer Science and Technology Xinjiang University Urumqi830017 China School of Intelligence Science and Technology Xinjiang University Urumqi830017 China Xinjiang Key Laboratory of Signal Detection and Processing Urumqi830017 China Department of Electronic Engineering Beijing National Research Center for Information Science and Technology Tsinghua University Beijing100084 China
The accuracy and reliability of automatic speaker verification (ASV) face significant challenges in noisy environments. In recent years, joint training of speech enhancement front-end and ASV back-end has been widely ... 详细信息
来源: 评论
A Fast Clustering Based Evolutionary Algorithm for Super-Large-Scale Sparse Multi-Objective Optimization
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2023年 第4期10卷 1048-1063页
作者: Ye Tian Yuandong Feng Xingyi Zhang Changyin Sun Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education Institutes of Physical Science and Information TechnologyAnhui UniversityHefei 230601China School of Computer Science and Technology Anhui UniversityHefei 230601China School of Artificial Intelligence Anhui UniversityHefei 230601China School of Automation Southeast UniversityNanjing 210096China
During the last three decades,evolutionary algorithms(EAs)have shown superiority in solving complex optimization problems,especially those with multiple objectives and non-differentiable ***,due to the stochastic sear... 详细信息
来源: 评论
Alignment-Free RGB-T Salient Object Detection: A Large-scale Dataset and Progressive Correlation Network
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Kunpeng Chen, Keke Li, Chenglong Tu, Zhengzheng Luo, Bin Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education Anhui Provincial Key Laboratory of Multimodal Cognitive Computation School of Computer Science and Technology Anhui University China Anhui Provincial Key Laboratory of Security Artificial Intelligence School of Artificial Intelligence Anhui University China
Alignment-free RGB-Thermal (RGB-T) salient object detection (SOD) aims to achieve robust performance in complex scenes by directly leveraging the complementary information from unaligned visible-thermal image pairs, w...
来源: 评论
A Gradient-Guided Evolutionary Approach to Training Deep Neural Networks
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022年 第9期33卷 4861-4875页
作者: Yang, Shangshang Tian, Ye He, Cheng Zhang, Xingyi Tan, Kay Chen Jin, Yaochu Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education School of Computer Science and Technology Anhui University Hefei China Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education Institutes of Physical Science and Information Technology Anhui University Hefei China Department of Computer Science and Engineering Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation Southern University of Science and Technology Shenzhen China Department of Computing The Hong Kong Polytechnic University Hong Kong SAR Department of Computer Science University of Surrey Guildford U.K
It has been widely recognized that the efficient training of neural networks (NNs) is crucial to classification performance. While a series of gradient-based approaches have been extensively developed, they are critic... 详细信息
来源: 评论
Spatially Informed Independent vector analysis for Source Extraction based on the convolutive Transfer Function Model  48
Spatially Informed Independent vector analysis for Source Ex...
收藏 引用
48th IEEE International Conference on Acoustics, Speech and signal processing, ICASSP 2023
作者: Wang, Xianrui Brendel, Andreas Huang, Gongping Yang, Yichen Kellermann, Walter Chen, Jingdong Northwestern Polytechnical University CIAIC and Shaanxi Provincial Key Laboratory of Artificial Intelligence Xi'an710072 China Friedrich-Alexander-Universität Multimedia Communications and Signal Processing Erlangen-Nürnberg Germany
Spatial information can help improve source separation performance. Numerous spatially informed source extraction methods based on the independent vector analysis (IVA) have been developed, which can achieve reasonabl... 详细信息
来源: 评论
An airborne radar clutter suppression algorithm based on negative log-likelihood minimization
收藏 引用
IEEE Sensors Journal 2025年 第12期25卷 22430-22440页
作者: Cao, Junxiang Wang, Tong Cui, Weichen National Key Laboratory of Radar Signal Processing Xidian University Xi’an China Beijing Aerospace Automatic Control Institute Beijing China National Key Laboratory of Science and Technology on Aerospace Intelligence Control Beijing China
Space time adaptive processing (STAP) plays an important role in the field of airborne radar clutter suppression. However, due to the inhomogeneity of the clutter environment, the radar system is unable to obtain enou... 详细信息
来源: 评论
An Improved Optimal Transport Kernel Embedding Method with Gating Mechanism for Singing Voice Separation and Speaker Identification  48
An Improved Optimal Transport Kernel Embedding Method with G...
收藏 引用
48th IEEE International Conference on Acoustics, Speech and signal processing, ICASSP 2023
作者: Yuan, Weitao Bian, Yuren Wang, Shengbei Unoki, Masashi Wang, Wenwu Tiangong University Tianjin Key Laboratory of Autonomous Intelligence Technology and Systems China Japan Advanced Institute of Science and Technology Japan University of Surrey Centre for Vision Speech and Signal Processing Guildford United Kingdom
Singing voice separation (SVS) and speaker identification (SI) are two classic problems in speech signal processing. Deep neural networks (DNNs) solve these two problems by extracting effective representations of the ... 详细信息
来源: 评论