咨询与建议

限定检索结果

文献类型

  • 580 篇 期刊文献
  • 565 篇 会议

馆藏范围

  • 1,145 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 810 篇 工学
    • 650 篇 计算机科学与技术...
    • 563 篇 软件工程
    • 167 篇 信息与通信工程
    • 98 篇 控制科学与工程
    • 84 篇 生物工程
    • 72 篇 生物医学工程(可授...
    • 53 篇 机械工程
    • 51 篇 电子科学与技术(可...
    • 51 篇 化学工程与技术
    • 42 篇 电气工程
    • 40 篇 光学工程
    • 21 篇 仪器科学与技术
    • 21 篇 航空宇航科学与技...
    • 20 篇 交通运输工程
    • 17 篇 土木工程
    • 13 篇 动力工程及工程热...
    • 12 篇 建筑学
  • 449 篇 理学
    • 321 篇 数学
    • 101 篇 生物学
    • 78 篇 统计学(可授理学、...
    • 58 篇 物理学
    • 52 篇 化学
    • 31 篇 系统科学
  • 273 篇 管理学
    • 142 篇 管理科学与工程(可...
    • 136 篇 图书情报与档案管...
    • 43 篇 工商管理
  • 47 篇 医学
    • 39 篇 临床医学
    • 30 篇 基础医学(可授医学...
    • 26 篇 药学(可授医学、理...
  • 18 篇 农学
  • 16 篇 法学
    • 14 篇 社会学
  • 7 篇 经济学
  • 4 篇 教育学
  • 3 篇 艺术学
  • 2 篇 文学
  • 2 篇 军事学

主题

  • 63 篇 computer science
  • 54 篇 educational inst...
  • 49 篇 laboratories
  • 48 篇 educational tech...
  • 47 篇 knowledge engine...
  • 38 篇 data mining
  • 26 篇 semantics
  • 26 篇 computer science...
  • 24 篇 ontology
  • 20 篇 image segmentati...
  • 18 篇 feature extracti...
  • 16 篇 deep learning
  • 16 篇 genetic algorith...
  • 15 篇 reinforcement le...
  • 14 篇 contrastive lear...
  • 13 篇 ontologies
  • 13 篇 clustering algor...
  • 13 篇 artificial intel...
  • 12 篇 support vector m...
  • 12 篇 topology

机构

  • 494 篇 college of compu...
  • 283 篇 key laboratory o...
  • 84 篇 key laboratory o...
  • 46 篇 college of softw...
  • 44 篇 key laboratory o...
  • 40 篇 school of artifi...
  • 36 篇 key laboratory o...
  • 31 篇 college of compu...
  • 23 篇 key laboratory o...
  • 23 篇 jilin university...
  • 20 篇 jilin university...
  • 19 篇 school of comput...
  • 19 篇 key laboratory o...
  • 19 篇 key laboratory o...
  • 19 篇 key laboratory o...
  • 18 篇 jilin university...
  • 17 篇 department of co...
  • 15 篇 key laboratory o...
  • 15 篇 key laboratory o...
  • 14 篇 key laboratory o...

作者

  • 41 篇 yang bo
  • 36 篇 liang yanchun
  • 34 篇 sun geng
  • 31 篇 ouyang dantong
  • 31 篇 li ximing
  • 31 篇 li xiongfei
  • 29 篇 dantong ouyang
  • 27 篇 ouyang jihong
  • 26 篇 zuo wanli
  • 26 篇 yanchun liang
  • 25 篇 bo yang
  • 23 篇 niyato dusit
  • 23 篇 guan renchu
  • 23 篇 huang lan
  • 23 篇 liu yanheng
  • 22 篇 liu dayou
  • 22 篇 yanheng liu
  • 21 篇 chen haipeng
  • 21 篇 li jiahui
  • 19 篇 dayou liu

语言

  • 996 篇 英文
  • 115 篇 其他
  • 35 篇 中文
检索条件"机构=Key Laboratory of Computation and Knowledge Engineering"
1145 条 记 录,以下是61-70 订阅
排序:
Research on the Parsing Algorithm of Monocular Visual Structured Data Based on YOLOv5  2nd
Research on the Parsing Algorithm of Monocular Visual Struct...
收藏 引用
2nd World Conference on Intelligent and 3D Technologies, WCI3DT 2023
作者: Lu, Wanli Zhang, Wen Sun, Mingrui Zhang, Jindong College of Computer Science and Technology Jilin University Changchun130012 China College of Software Jilin University Changchun130012 China Key Laboratory of Symbol Computation and Knowledge Engineering of the Ministry of Education Jilin University Changchun130012 China
Visual perception plays an important role in autonomous driving technology. The two key factors in visual perception tasks are monocular object detection and structured data analysis. In this paper, a structured data ... 详细信息
来源: 评论
An image segmentation fusion algorithm based on density peak clustering and Markov random field
收藏 引用
Multimedia Tools and Applications 2024年 第37期83卷 85331-85355页
作者: Feng, Yuncong Liu, Wanru Zhang, Xiaoli Zhu, Xiaoyan College of Computer Science and Engineering Changchun University of Technology Jilin Changchun130012 China Artificial Intelligence Research Institute Changchun University of Technology Jilin Changchun130012 China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Jilin Changchun130012 China College of Computer Science and Technology Jilin University Jilin Changchun130012 China
Image segmentation is a crucial task in the field of computer vision. Markov random fields (MRF) based image segmentation method can effectively capture intricate relationships among pixels. However, MRF typically req... 详细信息
来源: 评论
Spatiotemporal Transformer for Data Inference and Long Prediction in Sparse Mobile CrowdSensing  42
Spatiotemporal Transformer for Data Inference and Long Predi...
收藏 引用
42nd IEEE International Conference on Computer Communications, INFOCOM 2023
作者: Wang, En Liu, Weiting Liu, Wenbin Xiang, Chaocan Yang, Bo Yang, Yongjian Jilin University College of Computer Science and Technology China Jilin University Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education China Chongqing University College of Computer Science China
Mobile CrowdSensing (MCS) is a data sensing paradigm that recruits users carrying mobile terminals to collect data. As its variant, Sparse MCS has been further proposed for large-scale and fine-grained sensing task wi... 详细信息
来源: 评论
A Driving Area Detection Algorithm Based on Swin Transformer  5
A Driving Area Detection Algorithm Based on Swin Transformer
收藏 引用
5th International Conference on Frontiers Technology of Information and Computer, ICFTIC 2023
作者: Liu, Shuang Li, Ying Jilin University College of Computer Science and Technology Jilin Changchun130012 China Jilin University Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin Changchun130012 China
The detection of drivable areas holds immense significance within the perception system of autonomous vehicles. This capability enables intelligent vehicles to gain a comprehensive understanding of the current road co... 详细信息
来源: 评论
ADAPTIVE DEPTH GRAPH ATTENTION NETWORKS
arXiv
收藏 引用
arXiv 2023年
作者: Zhou, Jingbo Du, Yixuan Zhang, Ruqiong Zhang, Rui Key Laboratory of Symbolic Computation and Knowledge Engineering of MOE Jilin University China
As one of the most popular GNN architectures, the graph attention networks (GAT) is considered the most advanced learning architecture for graph representation and has been widely used in various graph mining tasks wi... 详细信息
来源: 评论
Attribution rollout: a new way to interpret visual transformer
收藏 引用
Journal of Ambient Intelligence and Humanized Computing 2023年 第1期14卷 163-173页
作者: Xu, Li Yan, Xin Ding, Weiyue Liu, Zechao College of Computer Science and Technology Harbin Engineering University Nantong Street Heilongjiang Harbin150001 China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University Qianjin Street Jilin Changchun130012 China Department of Medicine Harvard Medical School Longwood Avenue BostonMA02115 United States
Transformer-based models are dominating the field of natural language processing and are becoming increasingly popular in the field of computer vision. However, the black box characteristics of transformers seriously ... 详细信息
来源: 评论
Prototype-Guided Multimodal Relation Extraction based on Entity Attributes  39
Prototype-Guided Multimodal Relation Extraction based on Ent...
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Zhang, Zefan Zhang, Weiqi Li, Yanhui Bai, Tian College of Computer Science and Technology Key Laboratory of Symbolic Computation and Knowledge Engineering Ministry of Education Jilin University China
Multimodal Relation Extraction (MRE) aims to predict relations between head and tail entities based on the context of sentence-image pairs. Most existing MRE methods progressively incorporate textual and visual inputs...
来源: 评论
Decision Mamba: Reinforcement Learning via Hybrid Selective Sequence Modeling  38
Decision Mamba: Reinforcement Learning via Hybrid Selective ...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Huang, Sili Hu, Jifeng Yang, Zhejian Yang, Liwei Luo, Tao Chen, Hechang Sun, Lichao Yang, Bo Key Laboratory of Symbolic Computation and Knowledge Engineering Ministry of Education China School of Artificial Intelligence Jilin University China Institute of High Performance Computing Agency for Science Technology and Research Singapore Lehigh University BethlehemPA United States
Recent works have shown the remarkable superiority of transformer models in reinforcement learning (RL), where the decision-making problem is formulated as sequential generation. Transformer-based agents could emerge ...
来源: 评论
Meta-GPS++: Enhancing Graph Meta-Learning with Contrastive Learning and Self-Training
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Yonghao Li, Mengyu Li, Ximing Huang, Lan Giunchiglia, Fausto Liang, Yanchun Feng, Xiaoyue Guan, Renchu Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education College of Computer Science and Technology Jilin University Changchun China University of Trento Trento Italy Zhuhai Laboratory of the Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education Zhuhai College of Science and Technology Zhuhai China
Node classification is an essential problem in graph learning. However, many models typically obtain unsatisfactory performance when applied to few-shot scenarios. Some studies have attempted to combine meta-learning ... 详细信息
来源: 评论
A METHOD FOR INCREMENTAL DISCOVERY OF FINANCIAL EVENT TYPES BASED ON ANOMALY DETECTION
arXiv
收藏 引用
arXiv 2023年
作者: Gu, Dianyue Li, Zixu Guan, Zhenhai Zhang, Rui Huang, Lan Key Laboratory of Symbolic Computation and Knowledge Engineering of MOE Jilin University Changchun China
Event datasets in the financial domain are often constructed based on actual application scenarios, and their event types are weakly reusable due to scenario constraints;at the same time, the massive and diverse new f... 详细信息
来源: 评论