咨询与建议

限定检索结果

文献类型

  • 209 篇 期刊文献
  • 158 篇 会议

馆藏范围

  • 367 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 248 篇 工学
    • 193 篇 计算机科学与技术...
    • 157 篇 软件工程
    • 58 篇 信息与通信工程
    • 43 篇 控制科学与工程
    • 31 篇 生物工程
    • 27 篇 光学工程
    • 23 篇 电气工程
    • 23 篇 化学工程与技术
    • 21 篇 生物医学工程(可授...
    • 15 篇 机械工程
    • 11 篇 电子科学与技术(可...
    • 7 篇 仪器科学与技术
    • 7 篇 网络空间安全
    • 6 篇 建筑学
    • 6 篇 土木工程
    • 5 篇 测绘科学与技术
  • 151 篇 理学
    • 93 篇 数学
    • 37 篇 生物学
    • 29 篇 统计学(可授理学、...
    • 25 篇 物理学
    • 24 篇 化学
    • 12 篇 系统科学
  • 83 篇 管理学
    • 46 篇 管理科学与工程(可...
    • 42 篇 图书情报与档案管...
    • 19 篇 工商管理
  • 19 篇 医学
    • 16 篇 临床医学
    • 13 篇 基础医学(可授医学...
    • 7 篇 药学(可授医学、理...
    • 6 篇 公共卫生与预防医...
  • 8 篇 法学
    • 7 篇 社会学
  • 6 篇 农学
  • 4 篇 经济学
  • 1 篇 哲学
  • 1 篇 文学

主题

  • 21 篇 semantics
  • 11 篇 training
  • 10 篇 computational li...
  • 10 篇 feature extracti...
  • 8 篇 convolution
  • 7 篇 deep learning
  • 7 篇 granular computi...
  • 6 篇 semantic segment...
  • 6 篇 signal processin...
  • 6 篇 data mining
  • 6 篇 proteins
  • 5 篇 support vector m...
  • 5 篇 deep neural netw...
  • 5 篇 image segmentati...
  • 5 篇 laboratories
  • 5 篇 entropy
  • 5 篇 sentiment analys...
  • 5 篇 accuracy
  • 4 篇 fuzzy sets
  • 4 篇 information syst...

机构

  • 60 篇 school of comput...
  • 33 篇 key laboratory o...
  • 27 篇 key laboratory o...
  • 11 篇 school of artifi...
  • 10 篇 centre for visio...
  • 9 篇 institute of big...
  • 9 篇 xinjiang key lab...
  • 9 篇 school of comput...
  • 9 篇 school of intell...
  • 8 篇 key laboratory o...
  • 8 篇 school of comput...
  • 8 篇 key laboratory o...
  • 8 篇 key laboratory o...
  • 7 篇 institute of art...
  • 7 篇 jiangsu provinci...
  • 7 篇 key laboratory o...
  • 6 篇 institute of sci...
  • 6 篇 shanghai key lab...
  • 6 篇 key laboratory o...
  • 6 篇 artificial intel...

作者

  • 28 篇 liang jiye
  • 19 篇 li ru
  • 16 篇 jiye liang
  • 13 篇 li chenglong
  • 13 篇 zhang xingyi
  • 13 篇 wu xiao-jun
  • 13 篇 kittler josef
  • 13 篇 qian yuhua
  • 12 篇 zhang chao
  • 12 篇 li deyu
  • 12 篇 wei wei
  • 11 篇 wang suge
  • 10 篇 tang jin
  • 10 篇 yuhua qian
  • 9 篇 tian ye
  • 8 篇 yang shangshang
  • 8 篇 sangaiah arun ku...
  • 7 篇 liang jianqing
  • 7 篇 su xuefeng
  • 6 篇 yan zhichao

语言

  • 313 篇 英文
  • 34 篇 其他
  • 20 篇 中文
检索条件"机构=Key Laboratory of Computational Intelligence and Signal Processing"
367 条 记 录,以下是131-140 订阅
排序:
Riemannian Self-Attention Mechanism for SPD Networks
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Rui Wu, Xiao-Jun Li, Hui Kittler, Josef School of Artificial Intelligence and Computer Science Jiangnan University Wuxi214122 China Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence Jiangnan University China Centre for Vision Speech and Signal Processing University of Surrey GuildfordGU2 7XH United Kingdom
Symmetric positive definite (SPD) matrix has been demonstrated to be an effective feature descriptor in many scientific areas, as it can encode spatiotemporal statistics of the data adequately on a curved Riemannian m... 详细信息
来源: 评论
Local and Global Feature Adaptive Adjustment Network for Remote Sensing Image Scene Classification
Local and Global Feature Adaptive Adjustment Network for Rem...
收藏 引用
International Conference on Acoustics, Speech, and signal processing (ICASSP)
作者: Feng Cao Chang Liu Deyu Li Yuhua Qian Chao Zhang Hu Zhang School of Computer and Information Technology (School of Big Data) Shanxi University Taiyuan China Key Laboratory of Computational Intelligence and Chinese Information Processing Ministry of Education Shanxi University Taiyuan China Institute of Big Data and Industry Shanxi University Taiyuan China
Convolutional neural network (CNN)-based methods have been extensively used for remote sensing scene classification (RSSC) and have obtained remarkable classification results. However, its limitations in extracting gl...
来源: 评论
Combining Enhancement and Fusion for Low-Light Visible and Infrared Image
Combining Enhancement and Fusion for Low-Light Visible and I...
收藏 引用
Chinese Automation Congress (CAC)
作者: Shaoji Li Kunpeng Zhang Yudong Liang Chao Zhang Xuekui Shangguan School of Computer and Information Technology Shanxi University Taiyuan China Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education Shanxi Information Industry Technology Research Institute Co. Ltd China
Visible and infrared fusion aims to create a fused image that encompasses not only complex texture details and target-specific information but also facilitates advanced visual analyses. However, existing fusion algori...
来源: 评论
Designing Novel Cognitive Diagnosis Models via Evolutionary Multi-Objective Neural Architecture Search
arXiv
收藏 引用
arXiv 2023年
作者: Yang, Shangshang Ma, Haiping Zhen, Cheng Tian, Ye Zhang, Limiao Jin, Yaochu Zhang, Xingyi The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education School of Artificial Intelligence Anhui University Hefei230039 China The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education Institutes of Physical Science and Information Technology Anhui University Hefei230601 China Information Materials and Intelligent Sensing Laboratory of Anhui Province Anhui University Anhui Hefei230601 China The Faculty of Technology Bielefeld Unversity Bielefeld33619 Germany
Cognitive diagnosis plays a vital role in modern intelligent education platforms to reveal students’ proficiency in knowledge concepts for subsequent adaptive tasks. However, due to the requirement of high model inte... 详细信息
来源: 评论
Data Augmentation for Deep Learning Based a Utomaticmo Dulation Recognition
SSRN
收藏 引用
SSRN 2023年
作者: Ma, Hongbin Feng, Zhixi Yang, Shuyuan Wang, Min Wu, Tao Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education School of Artificial Intelligence Xidian University Xi’an710071 China Key Laboratory of Radar Signal Processing Xidian University Xi’an710071 China Xidian University China Institute School of Artificial Intelligence Xidian University TaiBai road 2# Shannxi Province Xi’an China
Data augmentation, as a strategy to expand training datasets, can be utilized to improve the accuracy of Deep Learning(DL)-based models to a certain extent. However, existing data augmentation methods for the DL-based... 详细信息
来源: 评论
Dataset for Recognizing Chinese Semantic Frames based on the Semantic Scenario of the "Yi A Wei B" Construction  23
收藏 引用
23rd Chinese National Conference on computational Linguistics, CCL 2024
作者: Yang, Peiyuan Su, Xuefeng Li, Juncai Yan, Zhichao Chai, Qinghua Li, Ru School of Computer and Information Technology Shanxi University China School of Modern Logistics Shanxi Vocational University of Engineering Science and Technology China School of Foreign Languages Shanxi University China Key Laboratory of Computational Intelligence and Chinese Information Processing Ministry of Education China
In Chinese, specific sentence structures often carry semantic meaning, a characteristic underexplored in existing datasets. Leveraging the Chinese Frame Semantic Knowledge Base, we conducted deep semantic analysis, fo... 详细信息
来源: 评论
HD-KT: Advancing Robust Knowledge Tracing via Anomalous Learning Interaction Detection  24
HD-KT: Advancing Robust Knowledge Tracing via Anomalous Lear...
收藏 引用
33rd ACM Web Conference, WWW 2024
作者: Ma, Haiping Yang, Yong Qin, Chuan Yu, Xiaoshan Yang, Shangshang Zhang, Xingyi Zhu, Hengshu Information Materials and Intelligent Sensing Laboratory of Anhui Province Institutes of Physical Science and Information Technology Anhui University Anhui Hefei China Institutes of Physical Science and Information Technology Anhui University Anhui Hefei China Career Science Lab BOSS Zhipin PBC School of Finance Tsinghua University Beijing China School of Artificial Intelligence Anhui University Anhui Hefei China The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education School of Computer Science and Technology Anhui University Anhui Hefei China Career Science Lab BOSS Zhipin Beijing China
Knowledge tracing (KT) is a crucial task in online learning, aimed at tracing and predicting each student's knowledge states throughout their learning process. Over the past decade, it has garnered widespread atte... 详细信息
来源: 评论
Enhanced Clutter Suppression and GMTIm Algorithm with Modified DKP and NCS for Single-Channel Spaceborne-Maneuvering BFSAR
收藏 引用
IEEE Transactions on Geoscience and Remote Sensing 2025年 63卷
作者: Liu, Yuzhou Song, Xuan Li, Yachao Wang, Yitao Guo, Yanhong Ye, Pei Wang, Xuanqi Shi, Guangming Xidian University National Key Laboratory of Radar Signal Processing Xi’an710071 China Northwestern Polytechnical University School of Astronautics Xi’an710072 China DalianNaval Academy Operation Software and Simulation Institute Dalian116018 China Dalian University of Technology Institute for Advanced Intelligence Dalian116024 China Xidian University School of Physics Xi’an710071 China Xidian University School of Artificial Intelligence Xi’an710071 China Peng Cheng Laboratory Shenzhen518055 China
Single-channel spaceborne-maneuvering bistatic forward-looking synthetic aperture radar (SS-BFSAR) enables the maneuvering platform to achieve high-resolution forward-looking imaging without deploying additional anten... 详细信息
来源: 评论
LE-CAM++: A Lighter and More Efficient CAM++ for Speaker Verification
LE-CAM++: A Lighter and More Efficient CAM++ for Speaker Ver...
收藏 引用
International Symposium on Chinese Spoken Language processing
作者: Shuanghong Liu Zhida Song Zhihua Fang Liang He School of Computer Science and Technology Xinjiang University Urumqi Xinjiang Key Laboratory of Signal Detection and Processing Urumqi School of Intelligence Science and Technology Xinjiang University Urumqi Department of Electronic Engineering and Beijing National Research Center for Information Science and Technology Tsinghua University Beijing
Due to its superior performance and fewer parameters, CAM++ has become the state-of-the-art model for speaker verification tasks. This model uses 2D convolutional blocks to extract front-end features, which are then f... 详细信息
来源: 评论
Simplified Skip-Connected UNet for Robust Speaker Verification Under Noisy Environments
Simplified Skip-Connected UNet for Robust Speaker Verificati...
收藏 引用
International Symposium on Chinese Spoken Language processing
作者: Zonghui Wang Zhihua Fang Zhida Song Liang He School of Computer Science and Technology Xinjiang University Urumqi Xinjiang Key Laboratory of Signal Detection and Processing Urumqi School of Intelligence Science and Technology Xinjiang University Urumqi Department of Electronic Engineering Beijing National Research Center for Information Science and Technology Tsinghua University Beijing
In recent years, deep neural network based methods for speaker verification have made remarkable progress in clean environments. However, background noise significantly reduces the accuracy and reliability of speaker ... 详细信息
来源: 评论