咨询与建议

限定检索结果

文献类型

  • 209 篇 期刊文献
  • 158 篇 会议

馆藏范围

  • 367 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 248 篇 工学
    • 193 篇 计算机科学与技术...
    • 157 篇 软件工程
    • 58 篇 信息与通信工程
    • 43 篇 控制科学与工程
    • 31 篇 生物工程
    • 27 篇 光学工程
    • 23 篇 电气工程
    • 23 篇 化学工程与技术
    • 21 篇 生物医学工程(可授...
    • 15 篇 机械工程
    • 11 篇 电子科学与技术(可...
    • 7 篇 仪器科学与技术
    • 7 篇 网络空间安全
    • 6 篇 建筑学
    • 6 篇 土木工程
    • 5 篇 测绘科学与技术
  • 151 篇 理学
    • 93 篇 数学
    • 37 篇 生物学
    • 29 篇 统计学(可授理学、...
    • 25 篇 物理学
    • 24 篇 化学
    • 12 篇 系统科学
  • 83 篇 管理学
    • 46 篇 管理科学与工程(可...
    • 42 篇 图书情报与档案管...
    • 19 篇 工商管理
  • 19 篇 医学
    • 16 篇 临床医学
    • 13 篇 基础医学(可授医学...
    • 7 篇 药学(可授医学、理...
    • 6 篇 公共卫生与预防医...
  • 8 篇 法学
    • 7 篇 社会学
  • 6 篇 农学
  • 4 篇 经济学
  • 1 篇 哲学
  • 1 篇 文学

主题

  • 21 篇 semantics
  • 11 篇 training
  • 10 篇 computational li...
  • 10 篇 feature extracti...
  • 8 篇 convolution
  • 7 篇 deep learning
  • 7 篇 granular computi...
  • 6 篇 semantic segment...
  • 6 篇 signal processin...
  • 6 篇 data mining
  • 6 篇 proteins
  • 5 篇 support vector m...
  • 5 篇 deep neural netw...
  • 5 篇 image segmentati...
  • 5 篇 laboratories
  • 5 篇 entropy
  • 5 篇 sentiment analys...
  • 5 篇 accuracy
  • 4 篇 fuzzy sets
  • 4 篇 information syst...

机构

  • 60 篇 school of comput...
  • 33 篇 key laboratory o...
  • 27 篇 key laboratory o...
  • 11 篇 school of artifi...
  • 10 篇 centre for visio...
  • 9 篇 institute of big...
  • 9 篇 xinjiang key lab...
  • 9 篇 school of comput...
  • 9 篇 school of intell...
  • 8 篇 key laboratory o...
  • 8 篇 school of comput...
  • 8 篇 key laboratory o...
  • 8 篇 key laboratory o...
  • 7 篇 institute of art...
  • 7 篇 jiangsu provinci...
  • 7 篇 key laboratory o...
  • 6 篇 institute of sci...
  • 6 篇 shanghai key lab...
  • 6 篇 key laboratory o...
  • 6 篇 artificial intel...

作者

  • 28 篇 liang jiye
  • 19 篇 li ru
  • 16 篇 jiye liang
  • 13 篇 li chenglong
  • 13 篇 zhang xingyi
  • 13 篇 wu xiao-jun
  • 13 篇 kittler josef
  • 13 篇 qian yuhua
  • 12 篇 zhang chao
  • 12 篇 li deyu
  • 12 篇 wei wei
  • 11 篇 wang suge
  • 10 篇 tang jin
  • 10 篇 yuhua qian
  • 9 篇 tian ye
  • 8 篇 yang shangshang
  • 8 篇 sangaiah arun ku...
  • 7 篇 liang jianqing
  • 7 篇 su xuefeng
  • 6 篇 yan zhichao

语言

  • 313 篇 英文
  • 34 篇 其他
  • 20 篇 中文
检索条件"机构=Key Laboratory of Computational Intelligence and Signal Processing"
367 条 记 录,以下是11-20 订阅
排序:
LOG: A Local-to-Global Optimization Approach for Retrieval-based Explainable Multi-Hop Question Answering  31
LOG: A Local-to-Global Optimization Approach for Retrieval-b...
收藏 引用
31st International Conference on computational Linguistics, COLING 2025
作者: Xu, Hao Zhao, Yunxiao Zhang, Jiayang Wang, Zhiqiang Li, Ru School of Computer and Information Technology Shanxi University Taiyuan China Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education Shanxi University Taiyuan China
Multi-hop question answering (MHQA) aims to utilize multi-source intensive documents retrieved to derive the answer. However, it is very challenging to model the importance of knowledge retrieved. Previous approaches ... 详细信息
来源: 评论
Enhancing Event Causality Identification with LLM Knowledge and Concept-Level Event Relations  31
Enhancing Event Causality Identification with LLM Knowledge ...
收藏 引用
31st International Conference on computational Linguistics, COLING 2025
作者: Su, Ya Zhang, Hu Zhang, Guangjun Wang, Yujie Fan, Yue Li, Ru Wang, Yuanlong School of Computer and Information Technology Shanxi University Taiyuan China Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education Shanxi University Taiyuan China
Event Causality Identification (ECI) aims to identify fine-grained causal relationships between events in an unstructured text. Existing ECI methods primarily rely on knowledge-enhanced and graph-based reasoning appro... 详细信息
来源: 评论
A data representation method using distance correlation
收藏 引用
Frontiers of Computer Science 2025年 第1期19卷 1-14页
作者: Xinyan LIANG Yuhua QIAN Qian GUO keyin ZHENG Institute of Big Data Science and Industry Shanxi UniversityTaiyuan 030006China Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education Shanxi UniversityTaiyuan 030006China School of Computer Science and Technology Taiyuan University of Science and TechnologyTaiyuan 030024China Shanxi Key Laboratory of Big Data Analysis and Parallel Computing Taiyuan University of Science and TechnologyTaiyuan 030024China
Association in-between features has been demonstrated to improve the representation ability of data. However, the original association data reconstruction method may face two issues: the dimension of reconstructed dat... 详细信息
来源: 评论
Improving Generalization in Offline Reinforcement Learning via Adversarial Data Splitting  41
Improving Generalization in Offline Reinforcement Learning v...
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Wang, Da Li, Lin Wei, Wei Yu, Qixian Hao, Jianye Liang, Jiye Key Laboratory of Computational Intelligence and Chinese Information Processing Ministry of Education School of Computer and Information Technology Shanxi University Taiyuan China College of Intelligence and Computing Tianjin University Tianjin China
Offline Reinforcement Learning (RL) commonly suffers from the out-of-distribution (OOD) overestimation issue due to the distribution shift. Prior work gradually shifts their focus from suppressing OOD overestimation t... 详细信息
来源: 评论
Research on mixed decision implications based on formal concept analysis
收藏 引用
International Journal of Cognitive Computing in Engineering 2023年 第1期4卷 71-77页
作者: Ren, Xingguo Li, Deyu Zhai, Yanhui School of Computer and Information Technology Shanxi University Shanxi Taiyuan030006 China Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education Shanxi University Shanxi Taiyuan030006 China
Decision implication is an important form of knowledge representation and acquisition in Formal Concept Analysis. Decision implication reduces the redundancy of knowledge extracted from data. However, decision implica... 详细信息
来源: 评论
An Empirical Study on Neural Networks Pruning: Trimming for Reducing Memory or Workload  5
An Empirical Study on Neural Networks Pruning: Trimming for ...
收藏 引用
5th International Conference on Data-Driven Optimization of Complex Systems, DOCS 2023
作者: Xiao, Kaiwen Cai, Xiaodong Xu, Ke School of Artificial Intelligence Anhui University Hefei China Key Laboratory of Intelligent Computing and Signal Processing Ministry of Education Hefei China
Most of existing studies on neural network pruning only consider memory-based pruning strategies. However pruning for computational workload is often more important in hardware deployments due to a greater focus on mo... 详细信息
来源: 评论
An Update Method of Decision Implication Canonical Basis on Attribute Granulating
收藏 引用
Intelligent Automation & Soft Computing 2023年 第8期37卷 1833-1851页
作者: Yanhui Zhai Rujie Chen Deyu Li School of Computer and Information Technology Shanxi UniversityTaiyuanShanxi Province030006China Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education Shanxi UniversityTaiyuanShanxi Province030006China
Decision implication is a form of decision knowledge represen-tation,which is able to avoid generating attribute implications that occur between condition attributes and between decision *** with other forms of decisi... 详细信息
来源: 评论
Mitigating Shortcut Learning via Smart Data Augmentation based on Large Language Model  31
Mitigating Shortcut Learning via Smart Data Augmentation bas...
收藏 引用
31st International Conference on computational Linguistics, COLING 2025
作者: Sun, Xinyi Tan, Hongye Guo, Yaxin Qiang, Pengpeng Li, Ru Zhang, Hu School of Computer and Information Technology Shanxi University Taiyuan China Institute of Intelligent Information Processing Shanxi University Taiyuan China Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education Shanxi University Taiyuan China
Data-driven pre-trained language models typically perform shortcut learning wherein they rely on the spurious correlations between the data and the ground truth. This reliance can undermine the robustness and generali... 详细信息
来源: 评论
Denoising Diffusion Path: Attribution Noise Reduction with An Auxiliary Diffusion Model  38
Denoising Diffusion Path: Attribution Noise Reduction with A...
收藏 引用
38th Conference on Neural Information processing Systems, NeurIPS 2024
作者: Lei, Yiming Li, Zilong Zhang, Junping Shan, Hongming Shanghai Key Laboratory of Intelligent Information Processing School of Computer Science Fudan University China Institute of Science and Technology for Brain-Inspired Intelligence MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence MOE Frontiers Center for Brain Science Fudan University China
The explainability of deep neural networks (DNNs) is critical for trust and reliability in AI systems. Path-based attribution methods, such as integrated gradients (IG), aim to explain predictions by accumulating grad...
来源: 评论
Evolutionary Multi-Objective Neural Architecture Search for Generalized Cognitive Diagnosis Models  5
Evolutionary Multi-Objective Neural Architecture Search for ...
收藏 引用
5th International Conference on Data-Driven Optimization of Complex Systems, DOCS 2023
作者: Yang, Shangshang Zhen, Cheng Tian, Ye Ma, Haiping Liu, Yuanchao Zhang, Panpan Zhang, Xingyi School of Artificial Intelligence Anhui University Key Laboratory of Intelligent Computing and Signal Processing Ministry of Education Hefei China Institutes of Physical Science and Information Technology Anhui University Key Laboratory of Intelligent Computing and Signal Processing Ministry of Education Hefei China Automation for Process Industries Northeastern University State Key Laboratory of Synthetical Shenyang China
Cognitive diagnosis models (CDMs) with high generalization are essential for intelligent education systems to reveal students' knowledge states in multiple datasets. However, existing CDMs' architectures are d... 详细信息
来源: 评论