咨询与建议

限定检索结果

文献类型

  • 205 篇 期刊文献
  • 158 篇 会议

馆藏范围

  • 363 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 243 篇 工学
    • 188 篇 计算机科学与技术...
    • 160 篇 软件工程
    • 57 篇 信息与通信工程
    • 37 篇 控制科学与工程
    • 32 篇 生物工程
    • 27 篇 光学工程
    • 24 篇 化学工程与技术
    • 23 篇 电气工程
    • 22 篇 生物医学工程(可授...
    • 15 篇 机械工程
    • 11 篇 电子科学与技术(可...
    • 7 篇 仪器科学与技术
    • 7 篇 网络空间安全
    • 5 篇 建筑学
    • 5 篇 土木工程
    • 5 篇 环境科学与工程(可...
  • 154 篇 理学
    • 95 篇 数学
    • 37 篇 生物学
    • 30 篇 统计学(可授理学、...
    • 26 篇 物理学
    • 25 篇 化学
    • 12 篇 系统科学
  • 82 篇 管理学
    • 46 篇 管理科学与工程(可...
    • 41 篇 图书情报与档案管...
    • 19 篇 工商管理
  • 20 篇 医学
    • 17 篇 临床医学
    • 14 篇 基础医学(可授医学...
    • 8 篇 药学(可授医学、理...
    • 6 篇 公共卫生与预防医...
  • 8 篇 法学
    • 7 篇 社会学
  • 6 篇 农学
  • 4 篇 经济学
  • 1 篇 哲学
  • 1 篇 文学

主题

  • 21 篇 semantics
  • 11 篇 training
  • 10 篇 computational li...
  • 10 篇 feature extracti...
  • 8 篇 convolution
  • 7 篇 deep learning
  • 7 篇 granular computi...
  • 6 篇 semantic segment...
  • 6 篇 signal processin...
  • 6 篇 data mining
  • 6 篇 proteins
  • 5 篇 support vector m...
  • 5 篇 deep neural netw...
  • 5 篇 laboratories
  • 5 篇 entropy
  • 5 篇 sentiment analys...
  • 5 篇 accuracy
  • 4 篇 fuzzy sets
  • 4 篇 information syst...
  • 4 篇 computer archite...

机构

  • 60 篇 school of comput...
  • 33 篇 key laboratory o...
  • 25 篇 key laboratory o...
  • 11 篇 school of artifi...
  • 10 篇 centre for visio...
  • 9 篇 institute of big...
  • 9 篇 xinjiang key lab...
  • 9 篇 school of comput...
  • 9 篇 school of intell...
  • 8 篇 key laboratory o...
  • 8 篇 school of comput...
  • 8 篇 key laboratory o...
  • 8 篇 key laboratory o...
  • 7 篇 jiangsu provinci...
  • 7 篇 key laboratory o...
  • 6 篇 institute of art...
  • 6 篇 institute of sci...
  • 6 篇 shanghai key lab...
  • 6 篇 key laboratory o...
  • 6 篇 artificial intel...

作者

  • 26 篇 liang jiye
  • 19 篇 li ru
  • 16 篇 jiye liang
  • 13 篇 li chenglong
  • 13 篇 zhang xingyi
  • 13 篇 wu xiao-jun
  • 13 篇 kittler josef
  • 13 篇 qian yuhua
  • 12 篇 zhang chao
  • 12 篇 li deyu
  • 12 篇 wei wei
  • 11 篇 wang suge
  • 10 篇 tang jin
  • 10 篇 yuhua qian
  • 9 篇 tian ye
  • 8 篇 yang shangshang
  • 8 篇 sangaiah arun ku...
  • 7 篇 liang jianqing
  • 7 篇 su xuefeng
  • 6 篇 yan zhichao

语言

  • 316 篇 英文
  • 27 篇 其他
  • 20 篇 中文
检索条件"机构=Key Laboratory of Computational Intelligence and Signal Processing"
363 条 记 录,以下是201-210 订阅
排序:
Incorporating Syntax and Frame Semantics in Neural Network for Machine Reading Comprehension  28
Incorporating Syntax and Frame Semantics in Neural Network f...
收藏 引用
28th International Conference on computational Linguistics, COLING 2020
作者: Guo, Shaoru Guan, Yong Li, Ru Li, Xiaoli Tan, Hongye School of Computer and Information Technology Shanxi University Taiyuan China Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education Shanxi University Taiyuan China Institute for Infocomm Research A*Star Singapore
Machine reading comprehension (MRC) is one of the most critical yet challenging tasks in natural language understanding(NLU), where both syntax and semantics information of text are essential components for text under... 详细信息
来源: 评论
A knowledge-guided framework for frame identification  59
A knowledge-guided framework for frame identification
收藏 引用
Joint Conference of the 59th Annual Meeting of the Association for computational Linguistics and the 11th International Joint Conference on Natural Language processing, ACL-IJCNLP 2021
作者: Su, Xuefeng Li, Ru Li, Xiaoli Pan, Jeff Z. Zhang, Hu Chai, Qinghua Han, Xiaoqi School of Computer and Information Technology Shanxi University Taiyuan China School of E-Commerce and Logistics Shanxi Vocational University of Engineering Technology Taiyuan China Key Laboratory of Computational Intelligence Chinese Information Processing of Ministry of Education Shanxi University Taiyuan China Institute for Infocomm Research A*Star Singapore ILCC School of Informatics University of Edinburgh United Kingdom
Frame Identification (FI) is a fundamental and challenging task in frame semantic parsing. The task aims to find the exact frame evoked by a target word in a given sentence. It is generally regarded as a classificatio... 详细信息
来源: 评论
DMNER: Biomedical Named Entity Recognition by Detection and Matching
arXiv
收藏 引用
arXiv 2023年
作者: Bian, Junyi Jiang, Rongze Zhai, Weiqi Huang, Tianyang Zhou, Hong Zhu, Shanfeng School of Computer Science Fudan University Shanghai200433 China Atypon Systems LLC United Kingdom Institute of Science and Technology for Brain-Inspired Intelligence Fudan University China Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence Fudan University Ministry of Education Shanghai200433 China MOE Frontiers Center for Brain Science Fudan University Shanghai200433 China Zhangjiang Fudan International Innovation Center Shanghai200433 China Shanghai Key Lab of Intelligent Information Processing Fudan University Shanghai200433 China
Biomedical named entity recognition (BNER) serves as the foundation for numerous biomedical text mining tasks. Unlike general NER, BNER require a comprehensive grasp of the domain, and incorporating external knowledge... 详细信息
来源: 评论
RFN-Nest: An end-to-end residual fusion network for infrared and visible images
arXiv
收藏 引用
arXiv 2021年
作者: Li, Hui Wu, Xiao-Jun Kittler, Josef Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence School of Artificial Intelligence and Computer Science Jiangnan University Wuxi214122 China The Center for Vision Speech and Signal Processing University of Surrey GuildfordGU2 7XH United Kingdom
In the image fusion field, the design of deep learning-based fusion methods is far from routine. It is invariably fusion-task specific and requires a careful consideration. The most difficult part of the design is to ... 详细信息
来源: 评论
PPT Fusion: Pyramid Patch Transformer for a Case Study in Image Fusion
arXiv
收藏 引用
arXiv 2021年
作者: Fu, Yu Xu, Tianyang Wu, Xiao-Jun Kittler, Josef Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence School of Artificial Intelligence and Computer Science Jiangnan University Wuxi 214122 China Centre for Vision Speech and Signal Processing University of Surrey GuildfordGU2 7XH United Kingdom
The Transformer architecture has witnessed a rapid development in recent years, outperforming the CNN architectures in many computer vision tasks, as exemplified by the Vision Transformers (ViT) for image classificati... 详细信息
来源: 评论
Disentangled Generation Network for Enlarged License Plate Recognition and A Unified Dataset
arXiv
收藏 引用
arXiv 2022年
作者: Li, Chenglong Yang, Xiaobin Wang, Guohao Zheng, Aihua Tan, Chang Jia, Ruoran Tang, Jin Information Materials and Intelligent Sensing Laboratory of Anhui Province Anhui Provincial Key Laboratory of Multimodal Cognitive Computation School of Artificial Intelligence Anhui University Hefei230601 China Information Materials and Intelligent Sensing Laboratory of Anhui Province Key Lab of Intelligent Computing and Signal Processing Ministry of Education Anhui Provincial Key Laboratory of Multimodal Cognitive Computation School of Computer Science and Technology Anhui University Hefei230601 China iFLYTEK Co. Ltd. Hefei230088 China
License plate recognition plays a critical role in many practical applications, but license plates of large vehicles are difficult to be recognized due to the factors of low resolution, contamination, low illumination... 详细信息
来源: 评论
Chinese Frame Disambiguation Method Based on GCN and Gate Mechanism  21
Chinese Frame Disambiguation Method Based on GCN and Gate Me...
收藏 引用
21st Chinese National Conference on computational Linguistic, CCL 2022
作者: You, Yanan Li, Ru Su, Xuefeng Yan, Zhichao Sun, Minshuai Wang, Chao School of Computer and Information Technology Shanxi University Shanxi Taiyuan030006 China Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education Shanxi University Shanxi Taiyuan030006 China School of Modern Logistics Shanxi Vocational University of Engineering Science and Technology Shanxi Jinzhong030609 China
Chinese frame disambiguation aims to select a frame that matches its semantic scene for the target word in the sentence among the candidate *** current research methods have the defects that the calculation of the hid... 详细信息
来源: 评论
Question Generation Model Based on Iterative Message Passing and Sliding Windows Hierarchical Attention  20
Question Generation Model Based on Iterative Message Passing...
收藏 引用
20th Chinese National Conference on computational Linguistics, CCL 2021
作者: Chen, Qian Gao, Xiaoying Wang, Suge Guo, Xin School of Computer and Information Technology Shanxi University Shanxi Taiyuan030006 China Key Laboratory Computational Intelligence Chinese Information Processing of Ministry of Education Shanxi University Shanxi Taiyuan030006 China
Knowledge graph question generation task is to generate related questions from a given knowledge *** recent years, the knowledge graph problem generation models mainly use RNN or Transformer to encode the knowledge gr... 详细信息
来源: 评论
Document-Level Event Extraction Based on Frame Semantic Mapping and Type Awareness  21
Document-Level Event Extraction Based on Frame Semantic Mapp...
收藏 引用
21st Chinese National Conference on computational Linguistic, CCL 2022
作者: Lu, Jiang Li, Ru Su, Xuefeng Yan, Zhichao Chen, Jiaxing School of Computer and Information Technology Shanxi University Shanxi Taiyuan030006 China Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education Shanxi University Shanxi Taiyuan030006 China School of Modern Logistics Shanxi Vocational University of Engineering Science and Technology Shanxi Jinzhong030609 China
Document-Level event extraction is the identification of its event type and event arguments from a given text. At present, the problems of sparse data and multi-event argument coupling are most in Document-Level event... 详细信息
来源: 评论
Research on Element Extraction of Personified Sentences Based on Enhanced Characters  20
Research on Element Extraction of Personified Sentences Base...
收藏 引用
20th Chinese National Conference on computational Linguistics, CCL 2021
作者: Li, Jing Wang, Suge Chen, Xin Wang, Dian School of Computer and Information Technology Shanxi University Shanxi Taiyuan030006 China Key Laboratory Computational Intelligence Chinese Information Processing of Ministry of Education Shanxi University Shanxi Taiyuan030006 China
In the appreciation questions of prose reading comprehension, the appreciation examination of anthropomorphic sentences is quite frequent. At present, the existing work only identification and extracts the ontological... 详细信息
来源: 评论