咨询与建议

限定检索结果

文献类型

  • 209 篇 期刊文献
  • 158 篇 会议

馆藏范围

  • 367 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 248 篇 工学
    • 193 篇 计算机科学与技术...
    • 157 篇 软件工程
    • 58 篇 信息与通信工程
    • 43 篇 控制科学与工程
    • 31 篇 生物工程
    • 27 篇 光学工程
    • 23 篇 电气工程
    • 23 篇 化学工程与技术
    • 21 篇 生物医学工程(可授...
    • 15 篇 机械工程
    • 11 篇 电子科学与技术(可...
    • 7 篇 仪器科学与技术
    • 7 篇 网络空间安全
    • 6 篇 建筑学
    • 6 篇 土木工程
    • 5 篇 测绘科学与技术
  • 151 篇 理学
    • 93 篇 数学
    • 37 篇 生物学
    • 29 篇 统计学(可授理学、...
    • 25 篇 物理学
    • 24 篇 化学
    • 12 篇 系统科学
  • 83 篇 管理学
    • 46 篇 管理科学与工程(可...
    • 42 篇 图书情报与档案管...
    • 19 篇 工商管理
  • 19 篇 医学
    • 16 篇 临床医学
    • 13 篇 基础医学(可授医学...
    • 7 篇 药学(可授医学、理...
    • 6 篇 公共卫生与预防医...
  • 8 篇 法学
    • 7 篇 社会学
  • 6 篇 农学
  • 4 篇 经济学
  • 1 篇 哲学
  • 1 篇 文学

主题

  • 21 篇 semantics
  • 11 篇 training
  • 10 篇 computational li...
  • 10 篇 feature extracti...
  • 8 篇 convolution
  • 7 篇 deep learning
  • 7 篇 granular computi...
  • 6 篇 semantic segment...
  • 6 篇 signal processin...
  • 6 篇 data mining
  • 6 篇 proteins
  • 5 篇 support vector m...
  • 5 篇 deep neural netw...
  • 5 篇 image segmentati...
  • 5 篇 laboratories
  • 5 篇 entropy
  • 5 篇 sentiment analys...
  • 5 篇 accuracy
  • 4 篇 fuzzy sets
  • 4 篇 information syst...

机构

  • 60 篇 school of comput...
  • 33 篇 key laboratory o...
  • 27 篇 key laboratory o...
  • 11 篇 school of artifi...
  • 10 篇 centre for visio...
  • 9 篇 institute of big...
  • 9 篇 xinjiang key lab...
  • 9 篇 school of comput...
  • 9 篇 school of intell...
  • 8 篇 key laboratory o...
  • 8 篇 school of comput...
  • 8 篇 key laboratory o...
  • 8 篇 key laboratory o...
  • 7 篇 institute of art...
  • 7 篇 jiangsu provinci...
  • 7 篇 key laboratory o...
  • 6 篇 institute of sci...
  • 6 篇 shanghai key lab...
  • 6 篇 key laboratory o...
  • 6 篇 artificial intel...

作者

  • 28 篇 liang jiye
  • 19 篇 li ru
  • 16 篇 jiye liang
  • 13 篇 li chenglong
  • 13 篇 zhang xingyi
  • 13 篇 wu xiao-jun
  • 13 篇 kittler josef
  • 13 篇 qian yuhua
  • 12 篇 zhang chao
  • 12 篇 li deyu
  • 12 篇 wei wei
  • 11 篇 wang suge
  • 10 篇 tang jin
  • 10 篇 yuhua qian
  • 9 篇 tian ye
  • 8 篇 yang shangshang
  • 8 篇 sangaiah arun ku...
  • 7 篇 liang jianqing
  • 7 篇 su xuefeng
  • 6 篇 yan zhichao

语言

  • 313 篇 英文
  • 34 篇 其他
  • 20 篇 中文
检索条件"机构=Key Laboratory of Computational Intelligence and Signal Processing"
367 条 记 录,以下是31-40 订阅
排序:
Anomalous Sound Detection Using Time-Frequency Feature and Mixbatch
收藏 引用
Journal of Shanghai Jiaotong University (Science) 2025年 1-8页
作者: Huang, Shun Zhang, Yunxiang Fang, Zhihua Tang, Minrui Xu, Ruifeng He, Liang School of Computer Science and Technology Xinjiang University Urumqi830017 China Xinjiang Key Laboratory of Signal Detection and Processing Urumqi830017 China School of Intelligence Science and Technology Xinjiang University Urumqi830017 China Department of Electronic Engineering Beijing National Research Center for Information Science and Technology Tsinghua University Beijing100084 China
The sound emitted by machines under abnormal working conditions exhibits various frequency patterns. Currently, the most advanced anomalous sound detection (ASD) approach is to apply a multi-head self-attention mechan... 详细信息
来源: 评论
Dual-Path Spectrogram Refinement Network for Robust Speaker Verification
收藏 引用
Journal of Shanghai Jiaotong University (Science) 2025年 1-9页
作者: Wang, Zonghui Fang, Zhihua He, Liang School of Computer Science and Technology Xinjiang University Urumqi830017 China School of Intelligence Science and Technology Xinjiang University Urumqi830017 China Xinjiang Key Laboratory of Signal Detection and Processing Urumqi830017 China Department of Electronic Engineering Beijing National Research Center for Information Science and Technology Tsinghua University Beijing100084 China
The accuracy and reliability of automatic speaker verification (ASV) face significant challenges in noisy environments. In recent years, joint training of speech enhancement front-end and ASV back-end has been widely ... 详细信息
来源: 评论
A Fast Clustering Based Evolutionary Algorithm for Super-Large-Scale Sparse Multi-Objective Optimization
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2023年 第4期10卷 1048-1063页
作者: Ye Tian Yuandong Feng Xingyi Zhang Changyin Sun Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education Institutes of Physical Science and Information TechnologyAnhui UniversityHefei 230601China School of Computer Science and Technology Anhui UniversityHefei 230601China School of Artificial Intelligence Anhui UniversityHefei 230601China School of Automation Southeast UniversityNanjing 210096China
During the last three decades,evolutionary algorithms(EAs)have shown superiority in solving complex optimization problems,especially those with multiple objectives and non-differentiable ***,due to the stochastic sear... 详细信息
来源: 评论
Exploring static rebalancing strategies for dockless bicycle sharing systems based on multi-granularity behavioral decision-making
收藏 引用
International Journal of Cognitive Computing in Engineering 2024年 第1期5卷 27-43页
作者: Zhang, Chao Zhang, Jiahui Li, Wentao Castillo, Oscar Zhang, Jiayi School of Computer and Information Technology Shanxi University Taiyuan030006 China Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education Shanxi University Taiyuan030006 China College of Artificial Intelligence Southwest University Chongqing400715 China Division of Graduate Studies and Research Tijuana Institute of Technology Tijuana22379 Mexico School of Computer Science and Statistics Trinity College Dublin Dublin 2 Ireland
In the continuously evolving context of urbanization, more people flock to cities for job opportunities and an improved quality of life, resulting in undeniable pressure on transportation networks. This leads to sever... 详细信息
来源: 评论
Iteratively Refined Behavior Regularization for Offline Reinforcement Learning  38
Iteratively Refined Behavior Regularization for Offline Rein...
收藏 引用
38th Conference on Neural Information processing Systems, NeurIPS 2024
作者: Ma, Yi Hao, Jianye Hu, Xiaohan Zheng, Yan Xiao, Chenjun School of Computer and Information Technology Shanxi University China Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education China College of Intelligence and Computing Tianjin University China Noah's Ark Lab Huawei Canada The Chinese University of Hong Kong Shenzhen China
One of the fundamental challenges for offline reinforcement learning (RL) is ensuring robustness to data distribution. Whether the data originates from a near-optimal policy or not, we anticipate that an algorithm sho...
来源: 评论
The Method of processing Abnormal Values for Flight Test Data Based on Wavelet Transform  2
The Method of Processing Abnormal Values for Flight Test Dat...
收藏 引用
2nd International Conference on Electronic Information Engineering and Computer Technology, EIECT 2022
作者: Xu, Jingxiang Zuo, Lei Zhao, Zheng Xidian University National Laboratory of Radar Signal Processing Xi'an710071 China State Key Laboratory of Experimental Physics and Computational Mathematics Beijing100076 China
In the flight test data, there usually are abnormal values due to uncertainties in acquisition, storage and transmission. processing the abnormal values is essential to ensure the accuracy of subsequent test data anal... 详细信息
来源: 评论
MRA-Depth: Multi-Resolution Attention based Monocular Depth Estimation  5
MRA-Depth: Multi-Resolution Attention based Monocular Depth ...
收藏 引用
5th International Conference on Robotics and Computer Vision, ICRCV 2023
作者: Wen, Jing Niu, Lukuan School of Computer Information and Technology Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education Shanxi University Taiyuan China School of Computer Information and Technology Shanxi University Taiyuan China
Delicate feature would become weaker or even disappear as going through deeper network layer, which results in jagged edges of objects in the depth estimation. To address this problem, we propose a multi-resolution at... 详细信息
来源: 评论
Spatially Informed Independent vector analysis for Source Extraction based on the convolutive Transfer Function Model  48
Spatially Informed Independent vector analysis for Source Ex...
收藏 引用
48th IEEE International Conference on Acoustics, Speech and signal processing, ICASSP 2023
作者: Wang, Xianrui Brendel, Andreas Huang, Gongping Yang, Yichen Kellermann, Walter Chen, Jingdong Northwestern Polytechnical University CIAIC and Shaanxi Provincial Key Laboratory of Artificial Intelligence Xi'an710072 China Friedrich-Alexander-Universität Multimedia Communications and Signal Processing Erlangen-Nürnberg Germany
Spatial information can help improve source separation performance. Numerous spatially informed source extraction methods based on the independent vector analysis (IVA) have been developed, which can achieve reasonabl... 详细信息
来源: 评论
Deform U-Net: Unsupervised Deformable 3D Biomedical Image Registration Network
Deform U-Net: Unsupervised Deformable 3D Biomedical Image Re...
收藏 引用
Artificial intelligence, Networking and Information Technology (AINIT), International Seminar on
作者: Yahu Yao Rong Lu Jun Wu Zaiyang Tao Lei Qu Key Laboratory of Computational Intelligence and Signal Processing Ministry of Education School of Electronics and Information Engineering Anhui University (AHU) Hefei China Anhui University (AHU) Refei China
We can focus on the challenges posed by traditional registration algorithms and the limitations of U-Net-based architectures in capturing sufficient semantic information due to their shallow coding layers with small r... 详细信息
来源: 评论
An Improved Optimal Transport Kernel Embedding Method with Gating Mechanism for Singing Voice Separation and Speaker Identification  48
An Improved Optimal Transport Kernel Embedding Method with G...
收藏 引用
48th IEEE International Conference on Acoustics, Speech and signal processing, ICASSP 2023
作者: Yuan, Weitao Bian, Yuren Wang, Shengbei Unoki, Masashi Wang, Wenwu Tiangong University Tianjin Key Laboratory of Autonomous Intelligence Technology and Systems China Japan Advanced Institute of Science and Technology Japan University of Surrey Centre for Vision Speech and Signal Processing Guildford United Kingdom
Singing voice separation (SVS) and speaker identification (SI) are two classic problems in speech signal processing. Deep neural networks (DNNs) solve these two problems by extracting effective representations of the ... 详细信息
来源: 评论