咨询与建议

限定检索结果

文献类型

  • 1,852 篇 会议
  • 1,603 篇 期刊文献

馆藏范围

  • 3,455 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,318 篇 工学
    • 1,697 篇 计算机科学与技术...
    • 1,326 篇 软件工程
    • 617 篇 信息与通信工程
    • 302 篇 电气工程
    • 248 篇 电子科学与技术(可...
    • 236 篇 控制科学与工程
    • 221 篇 生物工程
    • 153 篇 机械工程
    • 131 篇 网络空间安全
    • 111 篇 光学工程
    • 110 篇 仪器科学与技术
    • 105 篇 生物医学工程(可授...
    • 84 篇 化学工程与技术
    • 77 篇 动力工程及工程热...
    • 76 篇 交通运输工程
    • 61 篇 安全科学与工程
    • 55 篇 建筑学
  • 1,084 篇 理学
    • 638 篇 数学
    • 246 篇 生物学
    • 231 篇 物理学
    • 197 篇 统计学(可授理学、...
    • 92 篇 化学
    • 91 篇 系统科学
  • 677 篇 管理学
    • 391 篇 管理科学与工程(可...
    • 312 篇 图书情报与档案管...
    • 144 篇 工商管理
  • 107 篇 法学
    • 72 篇 社会学
  • 85 篇 医学
    • 69 篇 临床医学
    • 59 篇 基础医学(可授医学...
  • 58 篇 经济学
    • 58 篇 应用经济学
  • 39 篇 农学
  • 24 篇 军事学
  • 11 篇 教育学
  • 11 篇 文学
  • 9 篇 艺术学

主题

  • 137 篇 feature extracti...
  • 123 篇 semantics
  • 96 篇 accuracy
  • 79 篇 computational mo...
  • 77 篇 training
  • 65 篇 data models
  • 63 篇 deep learning
  • 61 篇 federated learni...
  • 49 篇 protocols
  • 48 篇 clustering algor...
  • 47 篇 data mining
  • 45 篇 neural networks
  • 45 篇 cryptography
  • 44 篇 visualization
  • 44 篇 privacy
  • 43 篇 robustness
  • 42 篇 predictive model...
  • 42 篇 security
  • 42 篇 adaptation model...
  • 41 篇 optimization

机构

  • 225 篇 key laboratory o...
  • 203 篇 shandong provinc...
  • 172 篇 school of comput...
  • 83 篇 key laboratory o...
  • 67 篇 computer network...
  • 67 篇 college of compu...
  • 59 篇 college of infor...
  • 57 篇 key laboratory o...
  • 55 篇 college of mathe...
  • 52 篇 shandong fundame...
  • 48 篇 beijing key labo...
  • 46 篇 shandong enginee...
  • 45 篇 key laboratory o...
  • 44 篇 institute of inf...
  • 42 篇 school of cyber ...
  • 41 篇 the key laborato...
  • 41 篇 school of comput...
  • 39 篇 fujian provincia...
  • 38 篇 university of ch...
  • 36 篇 shandong provinc...

作者

  • 48 篇 zhao yao
  • 41 篇 ren jiadong
  • 37 篇 zhou deyu
  • 32 篇 zhang min-ling
  • 27 篇 yang yang
  • 27 篇 min-ling zhang
  • 26 篇 cong runmin
  • 26 篇 guo wenzhong
  • 21 篇 xiaoming wu
  • 20 篇 guo kun
  • 20 篇 guang cheng
  • 19 篇 geng xin
  • 19 篇 wang yun
  • 19 篇 zhang zhenrong
  • 19 篇 du bo
  • 18 篇 xia chunhe
  • 17 篇 xiaoping li
  • 17 篇 he yulan
  • 17 篇 liu ximeng
  • 16 篇 zhenrong zhang

语言

  • 3,073 篇 英文
  • 253 篇 其他
  • 146 篇 中文
检索条件"机构=Key Laboratory of Computer Network Information Integration"
3455 条 记 录,以下是311-320 订阅
排序:
D-Router: Decoupled Content Routers with Remote Content Store
D-Router: Decoupled Content Routers with Remote Content Stor...
收藏 引用
IEEE International Conference on Communications (ICC)
作者: Shuyi Chen Tian Pan Chunyang Wu Guohao Ruan Jiao Zhang Tao Huang Yunjie Liu Beijing University of Posts and Telecommunications Beijing China Purple Mountain Laboratories Nanjing China Key Laboratory of Computer Network and Information Integration Ministry of Education Southeast University China
Named Data networking (NDN) enables efficient content distribution through in-network caching. However, the additional states of network intermediary nodes make NDN forwarding more burdensome, and the unpredictability... 详细信息
来源: 评论
A Non-Intrusive and Real-Time Data Provenance Method for DDS Systems
A Non-Intrusive and Real-Time Data Provenance Method for DDS...
收藏 引用
International Conference on Mobile Ad-hoc and Sensor networks, MSN
作者: Siyi Wei Jinbin Tu Yun Wang School of Computer Science and Engineering Southeast University Key Lab of Computer Network and Information Integration MOE Nanjing China
In the era of big data, because of the escalating data security threats, the importance of data provenance is widely recognized. It facilitates the tracking of data origins and evolution, improving the ability to diag... 详细信息
来源: 评论
EAT: Towards Long-Tailed Out-of-Distribution Detection
arXiv
收藏 引用
arXiv 2023年
作者: Wei, Tong Wang, Bo-Lin Zhang, Min-Ling School of Computer Science and Engineering Southeast University Nanjing210096 China Key Laboratory of Computer Network and Information Integration Southeast University Ministry of Education China
Despite recent advancements in out-of-distribution (OOD) detection, most current studies assume a class-balanced in-distribution training dataset, which is rarely the case in real-world scenarios. This paper addresses... 详细信息
来源: 评论
MCFTNet: Multimodal Cross-Layer Fusion Transformer network for Hyperspectral and LiDAR Data Classification
收藏 引用
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2025年 18卷 12803-12818页
作者: Huang, Wei Wu, Tianren Zhang, Xueyu Li, Liangliang Lv, Ming Jia, Zhenhong Zhao, Xiaobin Ma, Hongbing Vivone, Gemine Xinjiang University School of Computer Science and Technology Urumqi830017 China Xinjiang University Key Laboratory of Signal Detection and Processing Urumqi830017 China Guangxi University School of Computer and Electronic Information Nanning530004 China Guangxi University Guangxi Key Laboratory of Multimedia Communications and Network Technology Nanning530004 China Beijing Institute of Technology School of Information and Electronics Beijing100081 China University of Science and Technology Beijing School of Computer and Communication Engineering Beijing100083 China Tsinghua University Department of Electronic Engineering Beijing100084 China National Research Council Tito85050 Italy National Biodiversity Future Center NBFC Palermo90133 Italy
Remote sensing image classification is a popular yet challenging field. Many researchers have combined convolutional neural networks (CNNs) and Transformers for hyperspectral imaging (HSI) classification tasks. Howeve... 详细信息
来源: 评论
Intelligent Optimization Method for Mobile NOMA network using IMBO
Intelligent Optimization Method for Mobile NOMA Network usin...
收藏 引用
IEEE International Conference on Electronic information and Communication Technology (ICEICT)
作者: Xingyue Fu Lingwei Xu Zhihe Gao Zhe Chen Yufang Li Shubo Cao Qingdao University of Science & Technology Qingdao China Key Laboratory of Computer Network and Information Integration Southeast University Ministry of Education Nanjing China
Non-orthogonal multiple access (NOMA) technology can significantly increase access volume and spectrum efficiency. The introduction of NOMA technology into the mobile communication system can significantly enhance com...
来源: 评论
A VLAN-based network Testbed for Lightweight Satellite Constellation Emulation
A VLAN-based Network Testbed for Lightweight Satellite Const...
收藏 引用
IEEE International Conference on Communications (ICC)
作者: Yan Zheng Tian Pan Yan Zhang Jiang Liu Tao Huang Yunjie Liu Purple Mountain Laboratories Nanjing China Beijing University of Posts and Telecommunications Beijing China Key Laboratory of Computer Network and Information Integration Southeast University Ministry of Education China
Considering the high costs of satellite manufacturing and launch, as well as the complexity of in-orbit debugging, pre-launch emulation on the ground will significantly reduce the development costs of low Earth orbit ... 详细信息
来源: 评论
Multi-Classification Segmentation Method of Gastric Cancer Pathological Images Based on Deep Learning
Multi-Classification Segmentation Method of Gastric Cancer P...
收藏 引用
2024 lEEE International Conference on Advanced information, Mechanical Engineering, Robotics and Automation, AIMERA 2024
作者: Zhou, Hehu Pan, Jingshan Na, Li Ding, Qingyan Zhou, Chengjun Du, Wantong Qilu University of Technology Shandong Academy of Sciences Key Laboratory of Computing Power Network and Information Security Ministry of Education Shandong Computer Science Center National Supercomputer Center in Jinan China Shandong Fundamental Research Center for Computer Science Shandong Provincial Key Laboratory of Computer Networks Jinan China The Second Hospital of Shandong University Department of Pathology Jinan China
Gastric cancer is a serious health threat, and pathological imaging is important in detecting it. These images can assist doctors in accurately determining the location of the cancer, thereby providing an important re... 详细信息
来源: 评论
Contrastive Learning for Chest X-ray Classification: A Fusion of Topological Data Analysis and ResNet  9
Contrastive Learning for Chest X-ray Classification: A Fusio...
收藏 引用
9th IEEE International Conference on Data Science in Cyberspace, DSC 2024
作者: Ren, Hao Luo, Zeyu Jing, Fengshi Zhang, Xinyue He, Han Yu, Yonghao Zhao, Dawei City University of Macau Faculty of Data Science China Minzu University of China Beijing China Qilu University of Technology Shandong Academy of Sciences Key Laboratory of Computing Power Network and Information Security Ministry of Education Shandong Computer Science Center Jinan China Shandong Fundamental Research Center for Computer Science Shandong Provincial Key Laboratory of Computer Networks Jinan China
Lung diseases such as pneumonia and tuberculosis present significant global health challenges, leading to millions of deaths annually. Chest X-ray imaging is crucial for diagnosing these conditions, but interpretation... 详细信息
来源: 评论
Complementary Classifier Induced Partial Label Learning
arXiv
收藏 引用
arXiv 2023年
作者: Jia, Yuheng Si, Chongjie Zhang, Min-Ling Key Laboratory of Computer Network and Information Integration School of Computer Science and Engineering Nanjing210096 China MoE Key Lab of Artificial Intelligence AI Institute Shanghai200240 China
In partial label learning (PLL), each training sample is associated with a set of candidate labels, among which only one is valid. The core of PLL is to disambiguate the candidate labels to get the ground-truth one. I... 详细信息
来源: 评论
Fusion of Dynamic Hypergraph and Clinical Event for Sequential Diagnosis Prediction  29
Fusion of Dynamic Hypergraph and Clinical Event for Sequenti...
收藏 引用
29th IEEE International Conference on Parallel and Distributed Systems, ICPADS 2023
作者: Zhang, Xin Peng, Xueping Guan, Hongjiao Zhao, Long Qiao, Xinxiao Lu, Wenpeng Key Laboratory of Computing Power Network and Information Security Ministry of Education Shandong Computer Science Center Jinan China Shandong Fundamental Research Center for Computer Science Shandong Provincial Key Laboratory of Computer Networks Jinan China Australian Artificial Intelligence Institute University of Technology Sydney Sydney Australia
Sequential diagnosis prediction (SDP) is a challenging task, aiming to predict patients' future diagnoses based on their historical medical records. While methods based on graph neural networks (GNNs) have proven ... 详细信息
来源: 评论