咨询与建议

限定检索结果

文献类型

  • 631 篇 会议
  • 377 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 1,010 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 688 篇 工学
    • 506 篇 计算机科学与技术...
    • 308 篇 软件工程
    • 116 篇 电子科学与技术(可...
    • 100 篇 信息与通信工程
    • 78 篇 控制科学与工程
    • 57 篇 电气工程
    • 54 篇 机械工程
    • 48 篇 动力工程及工程热...
    • 46 篇 生物工程
    • 24 篇 光学工程
    • 23 篇 化学工程与技术
    • 23 篇 生物医学工程(可授...
    • 20 篇 材料科学与工程(可...
    • 18 篇 建筑学
    • 17 篇 仪器科学与技术
    • 16 篇 网络空间安全
    • 15 篇 环境科学与工程(可...
    • 14 篇 土木工程
    • 14 篇 交通运输工程
  • 255 篇 理学
    • 140 篇 数学
    • 52 篇 生物学
    • 46 篇 物理学
    • 41 篇 系统科学
    • 31 篇 统计学(可授理学、...
    • 27 篇 化学
  • 149 篇 管理学
    • 122 篇 管理科学与工程(可...
    • 39 篇 工商管理
    • 32 篇 图书情报与档案管...
  • 28 篇 医学
    • 25 篇 临床医学
    • 22 篇 基础医学(可授医学...
  • 12 篇 经济学
  • 8 篇 法学
  • 7 篇 农学
  • 2 篇 教育学
  • 2 篇 军事学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 73 篇 computer archite...
  • 38 篇 laboratories
  • 35 篇 hardware
  • 33 篇 delay
  • 30 篇 circuit faults
  • 26 篇 computational mo...
  • 24 篇 bandwidth
  • 21 篇 costs
  • 20 篇 circuit testing
  • 20 篇 protocols
  • 20 篇 clocks
  • 19 篇 throughput
  • 19 篇 wireless sensor ...
  • 19 篇 training
  • 18 篇 optimization
  • 18 篇 microprocessors
  • 17 篇 benchmarking
  • 16 篇 routing
  • 16 篇 deep learning
  • 16 篇 fault tolerance

机构

  • 273 篇 state key labora...
  • 163 篇 university of ch...
  • 94 篇 key laboratory o...
  • 82 篇 key laboratory o...
  • 54 篇 institute of com...
  • 41 篇 graduate univers...
  • 33 篇 chinese academy ...
  • 31 篇 key laboratory o...
  • 27 篇 national enginee...
  • 26 篇 state key labora...
  • 24 篇 graduate univers...
  • 22 篇 key laboratory o...
  • 19 篇 school of comput...
  • 19 篇 loongson technol...
  • 19 篇 state key labora...
  • 17 篇 chinese academy ...
  • 17 篇 department of el...
  • 16 篇 key laboratory o...
  • 15 篇 school of comput...
  • 15 篇 graduate school ...

作者

  • 89 篇 xiaowei li
  • 48 篇 li xiaowei
  • 43 篇 huawei li
  • 33 篇 yu hu
  • 33 篇 yinhe han
  • 30 篇 zhou mengchu
  • 29 篇 wang lei
  • 29 篇 zhan jianfeng
  • 27 篇 fan dongrui
  • 25 篇 hu yu
  • 24 篇 dongrui fan
  • 24 篇 li huawei
  • 24 篇 sun ninghui
  • 22 篇 tan guangming
  • 22 篇 chen mingyu
  • 22 篇 ye xiaochun
  • 21 篇 gao wanling
  • 19 篇 shen linlin
  • 18 篇 han yinhe
  • 17 篇 ninghui sun

语言

  • 929 篇 英文
  • 61 篇 中文
  • 22 篇 其他
检索条件"机构=Key Laboratory of Computer System and Architecture Institute of Computing Technology"
1010 条 记 录,以下是791-800 订阅
排序:
Alleviating Datapath Conflicts and Design Centralization in Graph Analytics Acceleration
arXiv
收藏 引用
arXiv 2022年
作者: Lin, Haiyang Yan, Mingyu Wang, Duo Zou, Mo Tu, Fengbin Ye, Xiaochun Fan, Dongrui Xie, Yuan State Key Laboratory of Computer Architecture Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China University of California at Santa Barbara CA United States
Previous graph analytics accelerators have achieved great improvement on throughput by alleviating irregular off-chip memory accesses. However, on-chip side datapath conflicts and design centralization have become the... 详细信息
来源: 评论
Energy-efficient NTT Design with One-bank SRAM and 2-D PE Array
Energy-efficient NTT Design with One-bank SRAM and 2-D PE Ar...
收藏 引用
Design, Automation and Test in Europe Conference and Exhibition
作者: Jianan Mu Huajie Tan Jiawen Wu Haotian Lu Chip-Hong Chang Shuai Chen Shengwen Liang Jing Ye Huawei Li Xiaowei Li State Key Laboratory of Computer Architecture Institute of Computing Technology Chinese Academy of Sciences University of Chinese Academy of Sciences CASTEST Tianjin University Nanyang Technological University Rock-Solid Security Lab Fiberhome
In Number Theoretic Transform (NTT) operation, more than half of the active energy consumption stems from memory accesses. Here, we propose a generalized design method to improve the energy efficiency of NTT operation...
来源: 评论
Background subtraction on depth videos with convolutional neural networks
arXiv
收藏 引用
arXiv 2019年
作者: Wang, Xueying Liu, Lei Li, Guangli Dong, Xiao Zhao, Peng Feng, Xiaobing State Key Laboratory of Computer Architecture Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China School of Computer and Control Engineering University of Chinese Academy of Sciences Beijing100049 China College of Computer Science and Technology Jilin University ChangchunJilin130012 China
Background subtraction is a significant component of computer vision systems. It is widely used in video surveillance, object tracking, anomaly detection, etc. A new data source for background subtraction appeared as ... 详细信息
来源: 评论
StyleGene: Crossover and Mutation of Region-level Facial Genes for Kinship Face Synthesis
StyleGene: Crossover and Mutation of Region-level Facial Gen...
收藏 引用
Conference on computer Vision and Pattern Recognition (CVPR)
作者: Hao Li Xianxu Hou Zepeng Huang Linlin Shen Computer Vision Institute College of Computer Science and Software Engineering Shenzhen University National Engineering Laboratory for Big Data System Computing Technology Shenzhen University School of AI and Advanced Computing Xi'an Jiaotong-Liverpool University Shenzhen Institute of Artificial Intelligence and Robotics for Society Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University
High-fidelity kinship face synthesis has many potential applications, such as kinship verification, missing child identification, and social media analysis. However, it is challenging to synthesize high-quality descen...
来源: 评论
GM-DF: Generalized Multi-Scenario Deepfake Detection
arXiv
收藏 引用
arXiv 2024年
作者: Lai, Yingxin Yu, Zitong Yang, Jing Li, Bin Kang, Xiangui Shen, Linlin The School of Computing and Information Technology Great Bay University Dongguan523000 China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen518060 China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen University Shenzhen518060 China The Guangdong Key Laboratory of Information Security The School of Computer Science and Engineering Sun Yat-sen University Guangzhou510080 China Computer Vision Institute School of Computer Science & Software Engineering Shenzhen Institute of Artificial Intelligence and Robotics for Society Guangdong Key Laboratory of Intelligent Information Processing National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen518060 China
Existing face forgery detection usually follows the paradigm of training models in a single domain, which leads to limited generalization capacity when unseen scenarios and unknown attacks occur. In this paper, we ela... 详细信息
来源: 评论
Pinpointing the Memory Behaviors of DNN Training
Pinpointing the Memory Behaviors of DNN Training
收藏 引用
IEEE International Symposium on Performance Analysis of systems and Software
作者: Jiansong Li Xiao Dong Guangli Li Peng Zhao Xueying Wang Xiaobing Chen Xianzhi Yu Yongxin Yang Zihan Jiang Wei Cao Lei Liu Xiaobing Feng University of Chinese Academy of Sciences Beijing China Youtu Lab Tencent Shanghai China Huawei Technology Co. Ltd Beijing China State Key Laboratory of Computer Architecture Institute of Computing Technology CAS Beijing China
The training of deep neural networks (DNNs) is usually memory-hungry due to the limited device memory capacity of DNN accelerators. Characterizing the memory behaviors of DNN training is critical to optimize the devic... 详细信息
来源: 评论
Pinpointing the memory behaviors of DNN training
arXiv
收藏 引用
arXiv 2021年
作者: Li, Jiansong Dong, Xiao Li, Guangli Zhao, Peng Wang, Xueying Chen, Xiaobing Yu, Xianzhi Yang, Yongxin Jiang, Zihan Cao, Wei Liu, Lei Feng, Xiaobing State Key Laboratory of Computer Architecture Institute of Computing Technology CAS Beijing China University of Chinese Academy of Sciences Beijing China Youtu Lab Tencent Shanghai China Huawei Technology Co. Ltd Beijing China
The training of deep neural networks (DNNs) is usually memory-hungry due to the limited device memory capacity of DNN accelerators. Characterizing the memory behaviors of DNN training is critical to optimize the devic... 详细信息
来源: 评论
Latency-aware Partial Task Offloading in Collaborative Edge computing
Latency-aware Partial Task Offloading in Collaborative Edge ...
收藏 引用
International Conference on computer Supported Cooperative Work in Design
作者: Yingmeng Gao Jie Zhu Haiping Huang Chen Chen Nanjing University of Posts & Telecommunications Nanjing China State Key Laboratory Chinese of Computer Architecture Institute of Computing Technology Academy of Sciences Beijing China Jiangsu High Technology Reasearch Key Laboratory of Wireless Sensor Networks Nanjing China Nanjing University of Aeronautics and Astronautics Nanjing China
When it comes to the fifth generation, collaborative edge computing is preferred for offloading computation-intensive tasks of low-latency applications in Internet of Things. In this paper, we consider the partial tas...
来源: 评论
BuildEnVR: An Immersive Analysis system for Environmental Field
BuildEnVR: An Immersive Analysis System for Environmental Fi...
收藏 引用
International Conference on Parallel and Distributed systems (ICPADS)
作者: Zhenghan Zhou Kebin Liu Yantong Xie Hangxu Jin Shi Liu Ruiqing Wang Haitian Zhao Borong Lin Xiaofang Mu Hui Qi Global Innovation Exchange Tsinghua University Fuzhou Fuyao Institute for Advanced Study School of Architecture Carnegie Mellon University School of Architecture Tsinghua University College of Computer Science and Technology Taiyuan Normal University Shanxi Key Laboratory of Intelligent Optimization Computing and Blockchain Technology
Amidst global warming and escalating extreme weather events, indoor environmental quality’s impact on human health and public hygiene gains prominence. Environmental parameters exist essentially as fields, which are ... 详细信息
来源: 评论
Understanding the Runtime Overheads of Deep Learning Inference on Edge Devices
Understanding the Runtime Overheads of Deep Learning Inferen...
收藏 引用
IEEE International Conference on Big Data and Cloud computing (BdCloud)
作者: Xiu Ma Guangli Li Lei Liu Huaxiao Liu Xiaobing Feng College of Computer Science and Technology Jilin University China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University China SKL of Computer Architecture Institute of Computing Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China
With the growing ubiquity of the Internet of Things, in-the-edge inference of deep neural network models has been a major driver for promoting the widespread use of intelligent applications. As model inference charact... 详细信息
来源: 评论