咨询与建议

限定检索结果

文献类型

  • 345 篇 会议
  • 172 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 518 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 331 篇 工学
    • 233 篇 计算机科学与技术...
    • 142 篇 软件工程
    • 61 篇 电子科学与技术(可...
    • 54 篇 信息与通信工程
    • 49 篇 控制科学与工程
    • 32 篇 机械工程
    • 31 篇 电气工程
    • 19 篇 生物工程
    • 15 篇 材料科学与工程(可...
    • 14 篇 光学工程
    • 12 篇 动力工程及工程热...
    • 12 篇 化学工程与技术
    • 10 篇 网络空间安全
    • 9 篇 交通运输工程
    • 9 篇 生物医学工程(可授...
    • 8 篇 仪器科学与技术
    • 7 篇 建筑学
    • 7 篇 土木工程
    • 6 篇 冶金工程
  • 133 篇 理学
    • 70 篇 数学
    • 26 篇 系统科学
    • 23 篇 物理学
    • 22 篇 生物学
    • 14 篇 统计学(可授理学、...
    • 12 篇 化学
  • 68 篇 管理学
    • 53 篇 管理科学与工程(可...
    • 20 篇 工商管理
    • 19 篇 图书情报与档案管...
  • 14 篇 医学
    • 12 篇 临床医学
    • 10 篇 基础医学(可授医学...
  • 5 篇 经济学
  • 3 篇 法学
  • 3 篇 农学
  • 1 篇 教育学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 56 篇 computer archite...
  • 34 篇 laboratories
  • 29 篇 delay
  • 24 篇 circuit faults
  • 22 篇 hardware
  • 20 篇 circuit testing
  • 20 篇 costs
  • 19 篇 bandwidth
  • 18 篇 clocks
  • 16 篇 system testing
  • 16 篇 microprocessors
  • 15 篇 protocols
  • 14 篇 throughput
  • 13 篇 routing
  • 13 篇 fault tolerance
  • 13 篇 wireless sensor ...
  • 13 篇 automatic test p...
  • 13 篇 computer network...
  • 12 篇 petri nets
  • 12 篇 system-on-a-chip

机构

  • 94 篇 key laboratory o...
  • 83 篇 key laboratory o...
  • 34 篇 institute of com...
  • 31 篇 key laboratory o...
  • 31 篇 graduate univers...
  • 30 篇 chinese academy ...
  • 26 篇 national enginee...
  • 23 篇 key laboratory o...
  • 19 篇 graduate univers...
  • 18 篇 department of el...
  • 17 篇 key laboratory o...
  • 16 篇 chinese academy ...
  • 13 篇 department of el...
  • 12 篇 guangdong provin...
  • 11 篇 department of co...
  • 11 篇 shenzhen institu...
  • 11 篇 university of ch...
  • 10 篇 chinese academy ...
  • 10 篇 loongson technol...
  • 10 篇 school of comput...

作者

  • 51 篇 xiaowei li
  • 31 篇 huawei li
  • 30 篇 zhou mengchu
  • 25 篇 li xiaowei
  • 21 篇 yu hu
  • 19 篇 shen linlin
  • 18 篇 yinhe han
  • 17 篇 mengchu zhou
  • 15 篇 dongrui fan
  • 14 篇 weiwu hu
  • 14 篇 changjun jiang
  • 13 篇 li huawei
  • 12 篇 cheng wang
  • 12 篇 xiang-yang li
  • 12 篇 hu yu
  • 11 篇 sun ninghui
  • 11 篇 han yinhe
  • 10 篇 jiang changjun
  • 9 篇 hu weiwu
  • 9 篇 yuzhong sun

语言

  • 469 篇 英文
  • 29 篇 中文
  • 20 篇 其他
检索条件"机构=Key Laboratory of Computer System and Architeture Institute of Computing Technology"
518 条 记 录,以下是71-80 订阅
排序:
Data protection and provenance in cloud of things environment: Research challenges
收藏 引用
International Journal of Information and computer Security 2020年 第4期12卷 416-435页
作者: Wang, Chundong Yang, Lei Guo, Hao Wan, Fujin Key Laboratory of Computer Vision and System Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology Ministry of Education Tianjin University of Technology Tianjin China Global Energy Internet Research Institute Beijing University of Technology Tianjin China Department of College of Computer and Control Engineering Nankai University Tianjin China
Internet of things are increasingly being deployed over the cloud (also referred to as cloud of things) to provide a broader range of services. However, there are serious challenges of CoT in the data protection and s... 详细信息
来源: 评论
Auto-MatRegressor材料性能自动预测器:解放材料机器学习"调参师"
收藏 引用
Science Bulletin 2023年 第12期68卷 1259-1270,M0004页
作者: 刘悦 王双燕 杨正伟 Maxim Avdeev 施思齐 School of Computer Engineering and Science Shanghai UniversityShanghai 200444China Shanghai Engineering Research Center of Intelligent Computing System Shanghai 200444China State Key Laboratory of Advanced Special Steel School of Materials Science and EngineeringShanghai UniversityShanghai 200444China Materials Genome Institute Shanghai UniversityShanghai 200444China Zhejiang Laboratory Hangzhou 311100China Australian Nuclear Science and Technology Organisation Sydney 2232Australia School of Chemistry The University of SydneySydney 2006Australia
机器学习因其能够快速、精准拟合数据的潜在模式而被广泛应用于材料构效关系研究。然而,材料科学家往往需要进行繁琐的模型选择及参数寻优才能构建出高精度预测模型,为了解放材料机器学习"调参师",本文研发了基于元学习的材... 详细信息
来源: 评论
OneForecast: A Universal Framework for Global and Regional Weather Forecasting
arXiv
收藏 引用
arXiv 2025年
作者: Gao, Yuan Wu, Hao Shu, Ruiqi Dong, Huanshuo Xu, Fan Chen, Rui Yan, Yibo Wen, Qingsong Hu, Xuming Wang, Kun Wu, Jiahao Li, Qing Xiong, Hui Huang, Xiaomeng Department of Earth System Science Ministry of Education Key Laboratory for Earth System Modeling Institute for Global Change Studies Tsinghua University China TEG Tencent China Department and Computer and Science University of Science and Technology of China China Institute for Interdisciplinary Information Sciences Tsinghua University China Department of Computer Science and Engineering The HongKong University of Science and Technology Hong Kong AI Thrust The Hong Kong University of Science and Technology Guangzhou China Squirrel Ai Learning China School of Computer Science and Engineering Nanyang Technological University Singapore Department of Computing The Hong Kong Polytechnic University Hong Kong
Accurate weather forecasts are important for disaster prevention, agricultural planning, and water resource management. Traditional numerical weather prediction (NWP) methods offer physically interpretable high-accura... 详细信息
来源: 评论
Low-Light Enhancement Effect on Classification and Detection: An Empirical Study
arXiv
收藏 引用
arXiv 2024年
作者: Wu, Xu Lai, Zhihui Jie, Zhou Gao, Can Hou, Xianxu Zhang, Ya-Nan Shen, Linlin The Computer Vision Institute College of Computer Science and Software Engineering Shenzhen University Shenzhen518060 China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen518060 China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen518060 China School of AI and Advanced Computing Xi’an Jiaotong-Liverpool University China The National Engineering Laboratory for Big Data System Computing Technology Shenzhen University SZU Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Guangdong Shenzhen518060 China
Low-light images are commonly encountered in real-world scenarios, and numerous low-light image enhancement (LLIE) methods have been proposed to improve the visibility of these images. The primary goal of LLIE is to g... 详细信息
来源: 评论
Provably Secure Efficient key-Exchange Protocol for Intelligent Supply Line Surveillance in Smart Grids
收藏 引用
IEEE Internet of Things Journal 2025年
作者: Ayub, Muhammad Faizan Li, Xiong Mahmood, Khalid Alenazi, Mohammed J.F. Das, Ashok Kumar Wang, Guijuan University of Electronic Science and Technology of China School of Computer Science and Engineering Sichuan Chengdu12599 China National Yunlin University of Science and Technology Graduate School of Intelligent Data Science Yunlin Douliu64002 Taiwan Department of Computer Engineering Riyadh11451 Saudi Arabia International Institute of Information Technology Center for Security Theory and Algorithmic Research Hyderabad500 032 India Korea University College of Informatics Department of Computer Science and Engineering Anam-ro Seoul145 Korea Republic of Ministry of Education Shandong Computer Science Center Qilu University of Technology Shandong Academy of Sciences Key Laboratory of Computing Power Network and Information Security Jinan250353 China Shandong Provincial Key Laboratory of Industrial Network and Information System Security China Shandong Fundamental Research Center for Computer Science Jinan 250353 China
Intelligent supply line surveillance is critical for modern smart grids. Smart sensors and gateway nodes are strategically deployed along supply lines to achieve intelligent surveillance. They collect data continuousl... 详细信息
来源: 评论
Look Inside for More: Internal Spatial Modality Perception for 3D Anomaly Detection
arXiv
收藏 引用
arXiv 2024年
作者: Liang, Hanzhe Xie, Guoyang Hou, Chengbin Wang, Bingshu Gao, Can Wang, Jinbao College of Computer Science and Software Engineering Shenzhen University Shenzhen China Shenzhen Audencia Financial Technology Institute Shenzhen University Shenzhen China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen China Department of Intelligent Manufacturing CATL Ningde China School of Computing and Artificial Intelligence Fuyao University of Science and Technology Fuzhou China School of Software Northwestern Polytechnical University Xi’an China Guangdong Provincial Key Laboratory of Intelligent Information Processing Shenzhen China
3D anomaly detection has recently become a significant focus in computer vision. Several advanced methods have achieved satisfying anomaly detection performance. However, they typically concentrate on the external str... 详细信息
来源: 评论
CodeEnhance: A Codebook-Driven Approach for Low-Light Image Enhancement
arXiv
收藏 引用
arXiv 2024年
作者: Wu, Xu Hou, XianXu Lai, Zhihui Zhou, Jie Zhang, Ya-Nan Pedrycz, Witold Shen, Linlin The Computer Vision Institute College of Computer Science and Software Engineering Shenzhen University Shenzhen518060 China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen518060 China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen518060 China School of AI and Advanced Computing Xi’an Jiaotong-Liverpool University China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University SZU Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Guangdong Shenzhen518060 China The Department of Electrical & Computer Engineering University of Alberta University of Alberta Canada
Low-light image enhancement (LLIE) aims to improve low-illumination images. However, existing methods face two challenges: (1) uncertainty in restoration from diverse brightness degradations;(2) loss of texture and co... 详细信息
来源: 评论
Multi-scale Contrastive Learning for Gastroenteroscopy Classification
Multi-scale Contrastive Learning for Gastroenteroscopy Class...
收藏 引用
Annual IEEE Symposium on computer-Based Medical systems
作者: Dan Li Xuechen Li Zhibin Peng Wenting Chen Linlin Shen Guangyao Wu Computer Vision Institute School of Computer Science & Software Engineering Shenzhen University National Engineering Laboratory for Big Data System Computing Technology ShenZhen University Shenzhen China City University of Hong Kong Hong Kong SAR China Shenzhen Institute of Artificial Intelligence & Robotics for Society Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University General Hospital
In gastroenteroscopy image analysis, numerous CADs demonstrate that deep learning aids doctors' diagnosis. The shapes and sizes of the lesions are varied. And in the clinic, the dataset appears to be data imbalanc...
来源: 评论
Size-invariance matters: rethinking metrics and losses for imbalanced multi-object salient object detection  24
Size-invariance matters: rethinking metrics and losses for i...
收藏 引用
Proceedings of the 41st International Conference on Machine Learning
作者: Feiran Li Qianqian Xu Shilong Bao Zhiyong Yang Runmin Cong Xiaochun Cao Qingming Huang Institute of Information Engineering Chinese Academy of Sciences Beijing China and School of Cyber Security University of Chinese Academy of Sciences Beijing China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing China School of Computer Science and Technology University of Chinese Academy of Sciences Beijing China Institute of Information Science Beijing Jiaotong University Beijing China and School of Control Science and Engineering Shandong University Jinan China and Key Laboratory of Machine Intelligence and System Control Ministry of Education Jinan China School of Cyber Science and Tech. Shenzhen Campus Sun Yat-sen University School of Computer Science and Technology University of Chinese Academy of Sciences Beijing China and Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing China and Key Laboratory of Big Data Mining and Knowledge Management Chinese Academy of Sciences Beijing China
This paper explores the size-invariance of evaluation metrics in Salient Object Detection (SOD), especially when multiple targets of diverse sizes co-exist in the same image. We observe that current metrics are size-s...
来源: 评论
A Robust key Exchange and Tamper-Resistant Protocol for HAN and NAN Networks in Smart Grids
收藏 引用
IEEE Internet of Things Journal 2025年
作者: Ayub, Muhammad Faizan Li, Xiong Mahmood, Khalid Shamshad, Salman Das, Ashok Kumar Wang, Guijuan University of Electronic Science and Technology of China School of Computer Science and Engineering Sichuan Chengdu611731 China National Yunlin University of Science and Technology Graduate School of Intelligent Data Science Yunlin Douliu64002 Taiwan The University of Lahore Department of Software Engineering Lahore54590 Pakistan International Institute of Information Technology Center for Security Theory and Algorithmic Research Hyderabad500 032 India Korea University College of Informatics Department of Computer Science and Engineering Anam-ro Seoul145 Korea Republic of Qilu University of Technology Shandong Academy of Sciences Key Laboratory of Computing Power Network and Information Security Ministry of Education Shandong Computer Science Center Jinan250353 China Shandong Fundamental Research Center for Computer Science Shandong Provincial Key Laboratory of Industrial Network and Information System Security Jinan250353 China
Smart Grids (SG) rely on Home Area Networks (HAN) and Neighborhood Area Networks (NAN) to ensure efficient power distribution, real-time monitoring, and seamless communication between smart devices. Despite these adva... 详细信息
来源: 评论