咨询与建议

限定检索结果

文献类型

  • 173 篇 期刊文献
  • 155 篇 会议

馆藏范围

  • 328 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 209 篇 工学
    • 149 篇 计算机科学与技术...
    • 138 篇 软件工程
    • 48 篇 信息与通信工程
    • 39 篇 生物工程
    • 29 篇 光学工程
    • 25 篇 控制科学与工程
    • 23 篇 电气工程
    • 23 篇 生物医学工程(可授...
    • 14 篇 机械工程
    • 12 篇 化学工程与技术
    • 8 篇 电子科学与技术(可...
    • 7 篇 仪器科学与技术
    • 6 篇 建筑学
    • 5 篇 土木工程
    • 4 篇 动力工程及工程热...
    • 4 篇 交通运输工程
  • 113 篇 理学
    • 48 篇 数学
    • 41 篇 生物学
    • 28 篇 物理学
    • 21 篇 统计学(可授理学、...
    • 15 篇 化学
    • 12 篇 系统科学
  • 61 篇 管理学
    • 40 篇 图书情报与档案管...
    • 23 篇 管理科学与工程(可...
    • 8 篇 工商管理
  • 8 篇 医学
    • 8 篇 临床医学
    • 5 篇 基础医学(可授医学...
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 4 篇 法学
    • 3 篇 社会学
  • 4 篇 农学
  • 3 篇 教育学
    • 3 篇 教育学
  • 3 篇 文学
  • 2 篇 艺术学

主题

  • 22 篇 machine learning
  • 13 篇 feature extracti...
  • 13 篇 accuracy
  • 13 篇 training
  • 12 篇 support vector m...
  • 10 篇 semantics
  • 8 篇 object detection
  • 8 篇 educational inst...
  • 8 篇 classification a...
  • 8 篇 computer vision
  • 7 篇 computer science
  • 7 篇 data mining
  • 7 篇 databases
  • 7 篇 benchmarking
  • 6 篇 learning systems
  • 6 篇 deep learning
  • 6 篇 deep neural netw...
  • 6 篇 three-dimensiona...
  • 6 篇 search engines
  • 6 篇 robustness

机构

  • 20 篇 key laboratory o...
  • 11 篇 university of ch...
  • 9 篇 guangxi key labo...
  • 8 篇 department of ph...
  • 8 篇 universiteit maa...
  • 8 篇 iccub universita...
  • 8 篇 université clerm...
  • 8 篇 instituto galego...
  • 8 篇 infn sezione di ...
  • 8 篇 european organiz...
  • 8 篇 lpnhe sorbonne u...
  • 8 篇 h.h. wills physi...
  • 8 篇 horia hulubei na...
  • 8 篇 tadeusz kosciusz...
  • 8 篇 nsc kharkiv inst...
  • 8 篇 infn sezione di ...
  • 8 篇 van swinderen in...
  • 8 篇 max-planck-insti...
  • 8 篇 université paris...
  • 8 篇 shenzhen key lab...

作者

  • 15 篇 chen chen
  • 11 篇 bischof horst
  • 11 篇 mohsen guizani
  • 10 篇 possegger horst
  • 9 篇 wang ran
  • 9 篇 wang liwei
  • 8 篇 guizani mohsen
  • 8 篇 liu mengyuan
  • 8 篇 liu hong
  • 7 篇 mengyuan liu
  • 6 篇 l. r. madhan moh...
  • 6 篇 a. jawahery
  • 6 篇 a. a. adefisoye
  • 6 篇 m. gandelman
  • 6 篇 a. maevskiy
  • 6 篇 t. gershon
  • 6 篇 y. shimizu
  • 6 篇 r. mountain
  • 6 篇 l. balzani
  • 6 篇 f. maciuc

语言

  • 310 篇 英文
  • 16 篇 其他
  • 2 篇 中文
检索条件"机构=Key Laboratory of Computer Vision and Machine Learning"
328 条 记 录,以下是91-100 订阅
排序:
Research of the issues based on trusted cloud security
Research of the issues based on trusted cloud security
收藏 引用
4th International Conference on Materials Science and Information Technology, MSIT 2014
作者: Huang, Yi Ma, Xin Qiang Liu, You Yuan Li, Dan Ning Key Laboratory of Machine Vision and Intelligent Information System Chongqing University of Arts and Sciences Chongqing 402160 China Guizhou Academy of Science Guiyang 550001 China School of Computer Science and Technology Guizhou University Guiyang 550025 China
Cloud computing represents one of the most significant shifts in information technology many of us are likely to see in our lifetimes. It offers an innovative business model for organizations to adopt IT services with... 详细信息
来源: 评论
Light field imaging for computer vision:a survey
收藏 引用
Frontiers of Information Technology & Electronic Engineering 2022年 第7期23卷 1077-1097页
作者: Chen JIA Fan SHI Meng ZHAO Shengyong CHEN Engineering Research Center of Learning-Based Intelligent System(Ministry of Education) Tianjin University of TechnologyTianjin 300384China Key Laboratory of Computer Vision and System(Ministry of Education) Tianjin University of TechnologyTianjin 300384China
Light field(LF)imaging has attracted attention because of its ability to solve computer vision *** this paper we briefly review the research progress in computer vision in recent *** most factors that affect computer ... 详细信息
来源: 评论
Brain tumor cell density estimation from multi-modal MR images based on a synthetic tumor growth model
Brain tumor cell density estimation from multi-modal MR imag...
收藏 引用
15th International Conference on Medical Image Computing and computer-Assisted Intervention, MICCAI 2012
作者: Geremia, Ezequiel Menze, Bjoern H. Prastawa, Marcel Weber, M.-A. Criminisi, Antonio Ayache, Nicholas Asclepios Research Project INRIA Sophia-Antipolis France Computer Science and Artificial Intelligence Laboratory MIT United States Computer Vision Laboratory ETH Zurich Switzerland Scientific Computing and Imaging Institute University of Utah United States Diagnostic and Interventional Radiology Heidelberg University Hospital Germany Machine Learning and Perception Group Microsoft Research Cambridge United Kingdom
This paper proposes to employ a detailed tumor growth model to synthesize labelled images which can then be used to train an efficient data-driven machine learning tumor predictor. Our MR image synthesis step generate... 详细信息
来源: 评论
Layout identification of printed mathematical formula for recognition
Layout identification of printed mathematical formula for re...
收藏 引用
International Conference on Information Engineering and computer Science
作者: Tian, Xue-Dong Zhao, Yan Wang, Hui Wang, Qiang-Jun College of Mathematics and Computer Science Hebei University Baoding China Hebei Key Laboratory of Machine Learning and Computational Intelligence Baoding China Baoding Senior Technical College Baoding China College of Literature Hebei University Baoding China
Printed mathematical formulas edited by different soft wares have some obvious differences. To distinguish it before recognition is beneficial to the formula recognition. Based on the statistical analysis to the chara... 详细信息
来源: 评论
Identifying driver genes in cancer based on Pareto optimality consensus
Identifying driver genes in cancer based on Pareto optimalit...
收藏 引用
2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022
作者: Deng, Zheng Wu, Jingli Chen, Xiaorong Li, Gaoshi Guangxi Normal University College of Computer Science Information Technology Guilin China Guangxi Normal University Guangxi Key Lab of Multi-source Information Mining & Security Guilin China Wuzhou University Guangxi Key Laboratory of Machine Vision Intelligent Control Wuzhou China
An important issue in cancer genomics is the identification of driver genes. It is significant for the discovery of key biomarkers and the development of effective personalized therapies. In this paper, a computated m... 详细信息
来源: 评论
ActMAD: Activation Matching to Align Distributions for Test-Time-Training
arXiv
收藏 引用
arXiv 2022年
作者: Mirza, Muhammad Jehanzeb Soneira, Pol Jané Lin, Wei Kozinski, Mateusz Possegger, Horst Bischof, Horst Institute for Computer Graphics and Vision TU Graz Austria Christian Doppler Laboratory for Embedded Machine Learning Institute of Control Systems KIT Germany Christian Doppler Laboratory for Semantic 3D Computer Vision
Test-Time-Training (TTT) is an approach to cope with out-of-distribution (OOD) data by adapting a trained model to distribution shifts occurring at test-time. We propose to perform this adaptation via Activation Match... 详细信息
来源: 评论
ActMAD: Activation Matching to Align Distributions for Test-Time-Training
ActMAD: Activation Matching to Align Distributions for Test-...
收藏 引用
Conference on computer vision and Pattern Recognition (CVPR)
作者: M. Jehanzeb Mirza Pol Jané Soneira Wei Lin Mateusz Kozinski Horst Possegger Horst Bischof Institute for Computer Graphics and Vision TU Graz Austria Christian Doppler Laboratory for Embedded Machine Learning Institute of Control Systems KIT Germany Christian Doppler Laboratory for Semantic 3D Computer Vision
Test-Time-Training (TTT) is an approach to cope with out-of-distribution (OOD) data by adapting a trained model to distribution shifts occurring at test-time. We propose to perform this adaptation via Activation Match...
来源: 评论
Collaborative visual navigation
arXiv
收藏 引用
arXiv 2021年
作者: Wang, Haiyang Wang, Wenguan Zhu, Xizhou Dai, Jifeng Wang, Liwei Key Laboratory of Machine Perception MOE Peking University SenseTime Research Computer Vision Lab ETH Zurich
As a fundamental problem for Artificial Intelligence, multi-agent system (MAS) is making rapid progress, mainly driven by multi-agent reinforcement learning (MARL) techniques. However, previous MARL methods largely fo... 详细信息
来源: 评论
An improved surround suppression model based on orientation contrast for boundary detection
An improved surround suppression model based on orientation ...
收藏 引用
International Conference on Pattern Recognition
作者: Hui Zhang Bojun Xie Jian Yu Key Laboratory of Machine Learning and Computational Intelligence College of Mathematics and Computer Science Hebei University Hebei China Laboratory of Machine Learning and Cognitive Computation School of Computer and Information Technology Beijing Jiaotong University Beijing China
This paper proposes an unsupervised bottom-up boundary detection algorithm, which is an improved surround suppression model based on orientation contrast. First, the candidate boundary set is obtained by the edge focu... 详细信息
来源: 评论
BPVFL: A Bidirectional Privacy-Preserving Verifiable Federated learning Framework with Homomorphic Encryption
BPVFL: A Bidirectional Privacy-Preserving Verifiable Federat...
收藏 引用
2024 IEEE Global Communications Conference, GLOBECOM 2024
作者: Liu, Jingwei Chen, Sijing Zhu, Junrong Sun, Rong Du, Xiaojiang Guizani, Mohsen Xidian University Shaanxi Key Laboratory of Blockchain and Secure Computing Xi'an710071 China Xidian University State Key Laboratory of Isn Xi'an710071 China Stevens Institute of Technology Department of Electrical and Computer Engineering Hoboken United States Department of Machine Learning Abu Dhabi999041 United Arab Emirates
Federated learning, while advancing data privacy, faces risks of sensitive information leakage through parameter updates, making it susceptible to inference and data reconstruction attacks. Fraudulent behaviors by cen... 详细信息
来源: 评论