咨询与建议

限定检索结果

文献类型

  • 174 篇 期刊文献
  • 156 篇 会议

馆藏范围

  • 330 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 209 篇 工学
    • 149 篇 计算机科学与技术...
    • 138 篇 软件工程
    • 48 篇 信息与通信工程
    • 39 篇 生物工程
    • 29 篇 光学工程
    • 25 篇 控制科学与工程
    • 23 篇 电气工程
    • 23 篇 生物医学工程(可授...
    • 14 篇 机械工程
    • 12 篇 化学工程与技术
    • 8 篇 电子科学与技术(可...
    • 7 篇 仪器科学与技术
    • 6 篇 建筑学
    • 5 篇 土木工程
    • 4 篇 动力工程及工程热...
    • 4 篇 交通运输工程
  • 113 篇 理学
    • 48 篇 数学
    • 41 篇 生物学
    • 28 篇 物理学
    • 21 篇 统计学(可授理学、...
    • 15 篇 化学
    • 12 篇 系统科学
  • 61 篇 管理学
    • 40 篇 图书情报与档案管...
    • 23 篇 管理科学与工程(可...
    • 8 篇 工商管理
  • 8 篇 医学
    • 8 篇 临床医学
    • 5 篇 基础医学(可授医学...
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 4 篇 法学
    • 3 篇 社会学
  • 4 篇 农学
  • 3 篇 教育学
    • 3 篇 教育学
  • 3 篇 文学
  • 2 篇 艺术学

主题

  • 22 篇 machine learning
  • 14 篇 training
  • 13 篇 feature extracti...
  • 13 篇 accuracy
  • 12 篇 support vector m...
  • 10 篇 semantics
  • 9 篇 classification a...
  • 8 篇 object detection
  • 8 篇 educational inst...
  • 8 篇 computer vision
  • 7 篇 computer science
  • 7 篇 data mining
  • 7 篇 databases
  • 7 篇 benchmarking
  • 6 篇 learning systems
  • 6 篇 deep learning
  • 6 篇 deep neural netw...
  • 6 篇 three-dimensiona...
  • 6 篇 search engines
  • 6 篇 robustness

机构

  • 20 篇 key laboratory o...
  • 11 篇 university of ch...
  • 10 篇 guangxi key labo...
  • 8 篇 department of ph...
  • 8 篇 universiteit maa...
  • 8 篇 iccub universita...
  • 8 篇 université clerm...
  • 8 篇 instituto galego...
  • 8 篇 infn sezione di ...
  • 8 篇 european organiz...
  • 8 篇 lpnhe sorbonne u...
  • 8 篇 h.h. wills physi...
  • 8 篇 horia hulubei na...
  • 8 篇 tadeusz kosciusz...
  • 8 篇 nsc kharkiv inst...
  • 8 篇 infn sezione di ...
  • 8 篇 college of compu...
  • 8 篇 van swinderen in...
  • 8 篇 max-planck-insti...
  • 8 篇 université paris...

作者

  • 15 篇 chen chen
  • 11 篇 bischof horst
  • 11 篇 mohsen guizani
  • 10 篇 possegger horst
  • 9 篇 wang ran
  • 9 篇 wang liwei
  • 8 篇 guizani mohsen
  • 8 篇 liu mengyuan
  • 8 篇 liu hong
  • 7 篇 mengyuan liu
  • 6 篇 l. r. madhan moh...
  • 6 篇 a. jawahery
  • 6 篇 a. a. adefisoye
  • 6 篇 m. gandelman
  • 6 篇 a. maevskiy
  • 6 篇 t. gershon
  • 6 篇 y. shimizu
  • 6 篇 r. mountain
  • 6 篇 l. balzani
  • 6 篇 f. maciuc

语言

  • 312 篇 英文
  • 16 篇 其他
  • 2 篇 中文
检索条件"机构=Key Laboratory of Computer Vision and Machine Learning"
330 条 记 录,以下是221-230 订阅
排序:
Feature extraction for hyperspectral imagery: The evolution from shallow to deep
arXiv
收藏 引用
arXiv 2020年
作者: Rasti, Behnood Hong, Danfeng Hang, Renlong Ghamisi, Pedram Kang, Xudong Chanussot, Jocelyn Benediktsson, Jon Atli Machine Learning Group Exploration Division Helmholtz Institute Freiberg for Resource Technology Helmholtz-Zentrum Dresden-Rossendorf Freiberg09599 Germany Univ. Grenoble Alpes CNRS Grenoble INP GIPSAlab Grenoble38000 France Jiangsu Key Laboratory of Big Data Analysis Technology School of Automation Nanjing University of Information Science and Technology Nanjing210044 China Machine Learning Group Exploration Division Helmholtz Institute Freiberg for Resource Technology Helmholtz-Zentrum Dresden-Rossendorf Freiberg09599 Germany College of Electrical and Information Engineering Hunan University Changsha410082 China Key Laboratory of Visual Perception and Artificial Intelligence of Hunan Province Changsha410082 China Univ. Grenoble Alpes Inria CNRS Grenoble INP LJK GrenobleF-38000 France Faculty of Electrical and Computer Engineering University of Iceland Reykjavik101 Iceland Faculty of Electrical and Computer Engineering University of Iceland Reykjavik107 Iceland
The final version of the paper can be found in IEEE Geoscience and Remote Sensing Magazine. Hyperspectral images provide detailed spectral information through hundreds of (narrow) spectral channels (also known as dime... 详细信息
来源: 评论
Deep learning Trackers Review and Challenge
收藏 引用
Journal of Information Hiding and Privacy Protection 2019年 第1期1卷 23-33页
作者: Yongxiang Gu Beijing Chen Xu Cheng Yifeng Zhang Jingang Shi School of Computer and Software Nanjing University of Information Science and Technology210044China School of Information Science and Engineering Southeast University210096China State Key Laboratory for Novel Software Technology Nanjing UniversityChina The Center for Machine Vision and Signal Analysis University of OuluFI-90014 OuluFinland
Recently,deep learning has achieved great success in visual *** goal of this paper is to review the state-of-the-art tracking methods based on deep ***,we categorize the existing deep learning based trackers into thre... 详细信息
来源: 评论
Gaussian curvature filter on 3d mesh
arXiv
收藏 引用
arXiv 2020年
作者: Tang, Wenming Gong, Yuanhao Liu, Kanglin Liu, Jun Pan, Wei Liu, Bozhi Qiu, Guoping College of Information Engineering Shenzhen University Guangdong Key Laboratory of Intelligent Information Processing Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China School of Mechanical & Automotive Engineering South China University of Technology Department of Research and Development OPT Machine Vision Tech Co. Ltd Jinsheng Road Changan Dongguan Guangdong523860 China School of Computer Science University of Nottingham NottinghamNG8 1BB United Kingdom
Minimizing Gaussian curvature of meshes is fundamentally important for obtaining smooth and developable surfaces. However, there is a lack of computationally efficient and robust Gaussian curvature optimization method... 详细信息
来源: 评论
learning explicit and implicit knowledge with differentiate neural computer  9
Learning explicit and implicit knowledge with differentiate ...
收藏 引用
9th International Conference on Advanced computer Science and Information Systems, ICACSIS 2017
作者: Ardhian, Adnan Fanany, Mohamad Ivan Machine Learning and Computer Vision Laboratory Faculty of Computer Science Universitas Indonesia Depok Indonesia
Neural Network can perform various of tasks well after learning process, but still have limitations in remembering. This is due to very limited memory. Differentiable Neural computer or DNC is proven to address the pr... 详细信息
来源: 评论
Analysis of an Adaptive Short-Time Fourier Transform-Based Multicomponent Signal Separation Method Derived from Linear Chirp Local Approximation
arXiv
收藏 引用
arXiv 2020年
作者: Chui, Charles K. Jiang, Qingtang Li, Lin Lu, Jian College of Mathematics & Statistics Shenzhen University Shenzhen518060 China Department of Mathematics Hong Kong Baptist University Hong Kong Department of Math & Computer Sci. Univ. of Missouri-St. Louis St. LouisMO63121 United States School of Electronic Engineering Xidian University Xian710071 China Shenzhen Key Laboratory of Advanced Machine Learning and Applications College of Mathematics & Statistics Shenzhen University Shenzhen518060 China
The synchrosqueezing transform (SST) has been developed as a powerful EMD-like tool for instantaneous frequency (IF) estimation and component separation of non-stationary multicomponent signals. Recently, a direct met... 详细信息
来源: 评论
A review of uncertainty quantification in deep learning: Techniques, applications and challenges
arXiv
收藏 引用
arXiv 2020年
作者: Abdar, Moloud Pourpanah, Farhad Hussain, Sadiq Rezazadegan, Dana Liu, Li Ghavamzadeh, Mohammad Fieguth, Paul Cao, Xiaochun Khosravi, Abbas Rajendra Acharya, U. Makarenkov, Vladimir Nahavandi, Saeid Deakin University Australia College of Mathematics and Statistics Guangdong Key Lab. of Intelligent Information Processing Shenzhen University Shenzhen518060 China Dibrugarh University Dibrugarh India Department of Computer Science and Software Engineering Swinburne University of Technology Melbourne Australia Center for Machine Vision and Signal Analysis University of Oulu Oulu Finland Google research United States Department of Systems Design Engineering University of Waterloo Waterloo Canada State Key Laboratory of Information Security Institute of Information Engineering Chinese Academy of Sciences Beijing China Department of Electronics and Computer Engineering Ngee Ann Polytechnic Clementi Singapore Department of Computer Science University of Quebec in Montreal MontrealQC Canada
—Uncertainty quantification (UQ) plays a pivotal role in the reduction of uncertainties during both optimization and decision making, applied to solve a variety of real-world applications in science and engineering. ... 详细信息
来源: 评论
SoccerNet 2023 Challenges Results
arXiv
收藏 引用
arXiv 2023年
作者: Cioppa, Anthony Giancola, Silvio Somers, Vladimir Magera, Floriane Zhou, Xin Mkhallati, Hassan Deliège, Adrien Held, Jan Hinojosa, Carlos Mansourian, Amir M. Miralles, Pierre Barnich, Olivier De Vleeschouwer, Christophe Alahi, Alexandre Ghanem, Bernard Van Droogenbroeck, Marc Kamal, Abdullah Maglo, Adrien Clapés, Albert Abdelaziz, Amr Xarles, Artur Orcesi, Astrid Scott, Atom Liu, Bin Lim, Byoungkwon Chen, Chen Deuser, Fabian Yan, Feng Yu, Fufu Shitrit, Gal Wang, Guanshuo Choi, Gyusik Kim, Hankyul Guo, Hao Fahrudin, Hasby Koguchi, Hidenari Ardö, Håkan Salah, Ibrahim Yerushalmy, Ido Muhammad, Iftikar Uchida, Ikuma Be'ery, Ishay Rabarisoa, Jaonary Lee, Jeongae Fu, Jiajun Yin, Jianqin Xu, Jinghang Nang, Jongho Denize, Julien Li, Junjie Zhang, Junpei Kim, Juntae Synowiec, Kamil Kobayashi, Kenji Zhang, Kexin Habel, Konrad Nakajima, Kota Jiao, Licheng Ma, Lin Wang, Lizhi Wang, Luping Li, Menglong Zhou, Mengying Nasr, Mohamed Abdelwahed, Mohamed Liashuha, Mykola Falaleev, Nikolay Oswald, Norbert Jia, Qiong Pham, Quoc-Cuong Song, Ran Hérault, Romain Peng, Rui Chen, Ruilong Liu, Ruixuan Baikulov, Ruslan Fukushima, Ryuto Escalera, Sergio Lee, Seungcheon Chen, Shimin Ding, Shouhong Someya, Taiga Moeslund, Thomas B. Li, Tianjiao Shen, Wei Zhang, Wei Li, Wei Dai, Wei Luo, Weixin Zhao, Wending Zhang, Wenjie Yang, Xinquan Ma, Yanbiao Joo, Yeeun Zeng, Yingsen Gan, Yiyang Zhu, Yongqiang Zhong, Yujie Ruan, Zheng Li, Zhiheng Huang, Zhijian Meng, Ziyu Belgium Saudi Arabia Sportradar Norway UCLouvain Belgium EPFL Switzerland EVS Broadcast Equipment Belgium Baidu Research United States Belgium Sharif University of Technology Iran Footovision France Zewail City of Science Technology and Innovation Egypt Université Paris-Saclay CEA France Universitat de Barcelona Spain Computer Vision Center Spain Nagoya University Japan Research Center for Applied Mathematics and Machine Intelligence Zhejiang Lab China AIBrain United States OPPO Research Institute China Germany Meituan China Tencent Youtu Lab China Amazon Prime Video Sport United States Sogang University Korea Republic of The University of Tokyo Japan Spiideo Sweden University of Tsukuba Japan School of Artificial Intelligence Beijing University of Posts and Telecommunications China Normandie Univ INSA Rouen LITIS France Shanghai Jiao Tong University China Key Laboratory of Intelligent Perception and Image Understanding The Ministry of Education Xidian University China NASK - National Research Institute Poland Robo Space China Tongji University China Sportlight Technology United Kingdom School of Control Science and Engineering Shandong University China lRomul Russia Aalborg University Denmark Turing AI Cultures GmbH Germany Information Systems Technology and Design Singapore University of Technology and Design Singapore Sun Yat-sen University China
The SoccerNet 2023 challenges were the third annual video understanding challenges organized by the SoccerNet team. For this third edition, the challenges were composed of seven vision-based tasks split into three mai... 详细信息
来源: 评论
Deep Multi-Model Fusion for Single-Image Dehazing
Deep Multi-Model Fusion for Single-Image Dehazing
收藏 引用
International Conference on computer vision (ICCV)
作者: Zijun Deng Lei Zhu Xiaowei Hu Chi-Wing Fu Xuemiao Xu Qing Zhang Jing Qin Pheng-Ann Heng South China University of Technology Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institutes of Advanced Technology CAS The Chinese University of Hong Kong State Key Laboratory of Subtropical Building Science Guangdong Provincial Key Lab of Computational Intelligence and Cyberspace Information Sun Yat-sen University The Hong Kong Polytechnic University CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institutes of Advanced Technology CAS
This paper presents a deep multi-model fusion network to attentively integrate multiple models to separate layers and boost the performance in single-image dehazing. To do so, we first formulate the attentional featur... 详细信息
来源: 评论
DeePMD-kit v2: A software package for Deep Potential models
arXiv
收藏 引用
arXiv 2023年
作者: Zeng, Jinzhe Zhang, Duo Lu, Denghui Mo, Pinghui Li, Zeyu Chen, Yixiao Rynik, Marián Huang, Li'ang Li, Ziyao Shi, Shaochen Wang, Yingze Ye, Haotian Tuo, Ping Yang, Jiabin Ding, Ye Li, Yifan Tisi, Davide Zeng, Qiyu Bao, Han Xia, Yu Huang, Jiameng Muraoka, Koki Wang, Yibo Chang, Junhan Yuan, Fengbo Bore, Sigbjørn Løland Cai, Chun Lin, Yinnian Wang, Bo Xu, Jiayan Zhu, Jia-Xin Luo, Chenxing Zhang, Yuzhi Goodall, Rhys E.A. Liang, Wenshuo Singh, Anurag Kumar Yao, Sikai Zhang, Jingchao Wentzcovitch, Renata Han, Jiequn Liu, Jie Jia, Weile York, Darrin M. Weinan, E. Car, Roberto Zhang, Linfeng Wang, Han Laboratory for Biomolecular Simulation Research Institute for Quantitative Biomedicine Department of Chemistry and Chemical Biology Rutgers University PiscatawayNJ08854 United States AI for Science Institute Beijing100080 China DP Technology Beijing100080 China Academy for Advanced Interdisciplinary Studies Peking University Beijing100871 China HEDPS CAPT College of Engineering Peking University Beijing100871 China College of Electrical and Information Engineering Hunan University Changsha China Yuanpei College Peking University Beijing100871 China Program in Applied and Computational Mathematics Princeton University PrincetonNJ08540 United States Department of Experimental Physics Comenius University Mlynská Dolina F2 Bratislava842 48 Slovakia Center for Quantum Information Institute for Interdisciplinary Information Sciences Tsinghua University Beijing100084 China Center for Data Science Peking University Beijing100871 China ByteDance Research Zhonghang Plaza No. 43 North 3rd Ring West Road Haidian District Beijing China College of Chemistry and Molecular Engineering Peking University Beijing100871 China Baidu Inc. Beijing China Key Laboratory of Structural Biology of Zhejiang Province School of Life Sciences Westlake University Zhejiang Hangzhou China Westlake AI Therapeutics Lab Westlake Laboratory of Life Sciences and Biomedicine Zhejiang Hangzhou China Department of Chemistry Princeton University PrincetonNJ08544 United States SISSA Scuola Internazionale Superiore di Studi Avanzati Trieste34136 Italy Laboratory of Computational Science and Modeling Institute of Materials École Polytechnique Fédérale de Lausanne Lausanne1015 Switzerland Department of Physics National University of Defense Technology Hunan Changsha410073 China State Key Lab of Processors Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China School of Electronics Engineerin
DeePMD-kit is a powerful open-source software package that facilitates molecular dynamics simulations using machine learning potentials (MLP) known as Deep Potential (DP) models. This package, which was released in 20... 详细信息
来源: 评论
Strategic priorities for transformative progress in advancing biology with proteomics and artificial intelligence
arXiv
收藏 引用
arXiv 2025年
作者: Sun, Yingying Jun, A. Liu, Zhiwei Sun, Rui Qian, Liujia Payne, Samuel H. Bittremieux, Wout Ralser, Markus Li, Chen Chen, Yi Dong, Zhen Perez-Riverol, Yasset Khan, Asif Sander, Chris Aebersold, Ruedi Vizcaíno, Juan Antonio Krieger, Jonathan R. Yao, Jianhua Wen, Han Zhang, Linfeng Zhu, Yunping Xuan, Yue Sun, Benjamin Boyang Qiao, Liang Hermjakob, Henning Tang, Haixu Gao, Huanhuan Deng, Yamin Zhong, Qing Chang, Cheng Bandeira, Nuno Li, Ming Weinan, E. Sun, Siqi Yang, Yuedong Omenn, Gilbert S. Zhang, Yue Xu, Ping Fu, Yan Liu, Xiaowen Overall, Christopher M. Wang, Yu Deutsch, Eric W. Chen, Luonan Cox, Jürgen Demichev, Vadim He, Fuchu Huang, Jiaxing Jin, Huilin Liu, Chao Li, Nan Luan, Zhongzhi Song, Jiangning Yu, Kaicheng Wan, Wanggen Wang, Tai Zhang, Kang Zhang, Le Bell, Peter A. Mann, Matthias Zhang, Bing Guo, Tiannan Affiliated Hangzhou First People’s Hospital State Key Laboratory of Medical Proteomics School of Medicine Westlake University Zhejiang Province Hangzhou China Westlake Center for Intelligent Proteomics Westlake Laboratory of Life Sciences and Biomedicine Zhejiang Province Hangzhou China Biology Department Brigham Young University ProvoUT84602 United States Department of Computer Science University of Antwerp Antwerp2020 Belgium Department of Biochemistry CharitéUniversitätsmedizin Berlin Berlin Germany Biomedicine Discovery Institute Department of Biochemistry and Molecular Biology Monash University MelbourneVICVIC 3800 Australia Wellcome Genome Campus Hinxton CambridgeCB10 1SD United Kingdom Harvard Medical School Ludwig Center at Harvard United States Harvard Medical School Broad Institute Ludwig Center at Harvard Dana-Farber Cancer Institute United States Department of Biology Institute of Molecular Systems Biology ETH Zürich Zürich Switzerland Bruker Ltd. MiltonONL9T 6P4 Canada AI for Life Sciences Lab Tencent Shenzhen518057 China State Key Laboratory of Medical Proteomics AI for Science Institute Beijing100080 China Beijing Institute of Lifeomics Beijing102206 China Thermo Fisher Scientific GmbH Hanna-Kunath Str. 11 Bremen28199 Germany Informatics and Predictive Sciences Research Bristol Myers Squibb United States Department of Chemistry Fudan University Songhu Road 2005 Shanghai200438 China Department of Computer Science Luddy School of Informatics Computing and Engineering Indiana University IN47408 United States ProCan® Children’s Medical Research Institute Faculty of Medicine and Health The University of Sydney WestmeadNSW Australia La Jolla CA United States Central China Institute of Artificial Intelligence University of Waterloo Canada AI for Science Institute Center for Machine Learning Research School of Mathematical Sciences Peking University China Research Institute of Intelligent Complex Systems Fudan U
Artificial intelligence (AI) is transforming scientific research, including proteomics. Advances in mass spectrometry (MS)-based proteomics data quality, diversity, and scale, combined with groundbreaking AI technique... 详细信息
来源: 评论