咨询与建议

限定检索结果

文献类型

  • 53 篇 期刊文献
  • 26 篇 会议

馆藏范围

  • 79 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 51 篇 工学
    • 28 篇 计算机科学与技术...
    • 26 篇 软件工程
    • 14 篇 电气工程
    • 11 篇 信息与通信工程
    • 9 篇 光学工程
    • 8 篇 机械工程
    • 8 篇 电子科学与技术(可...
    • 7 篇 生物工程
    • 6 篇 仪器科学与技术
    • 6 篇 控制科学与工程
    • 6 篇 化学工程与技术
    • 6 篇 生物医学工程(可授...
    • 3 篇 材料科学与工程(可...
    • 3 篇 动力工程及工程热...
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 测绘科学与技术
  • 33 篇 理学
    • 16 篇 物理学
    • 10 篇 生物学
    • 6 篇 数学
    • 5 篇 化学
    • 3 篇 统计学(可授理学、...
    • 1 篇 大气科学
    • 1 篇 系统科学
  • 8 篇 医学
    • 7 篇 临床医学
    • 5 篇 基础医学(可授医学...
    • 3 篇 药学(可授医学、理...
  • 8 篇 管理学
    • 5 篇 管理科学与工程(可...
    • 5 篇 图书情报与档案管...
  • 3 篇 农学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 4 篇 three-dimensiona...
  • 4 篇 fiber
  • 4 篇 visualization
  • 4 篇 feature extracti...
  • 4 篇 solid modeling
  • 3 篇 polarization
  • 3 篇 deep neural netw...
  • 3 篇 speech processin...
  • 3 篇 semantics
  • 3 篇 computer vision
  • 2 篇 conferences
  • 2 篇 rendering (compu...
  • 2 篇 generative adver...
  • 2 篇 automation
  • 2 篇 image segmentati...
  • 2 篇 signal processin...
  • 2 篇 lighting
  • 2 篇 convolution
  • 2 篇 oam
  • 2 篇 computational mo...

机构

  • 8 篇 key laboratory o...
  • 8 篇 school of comput...
  • 7 篇 key laboratory o...
  • 5 篇 shanghai jiao to...
  • 5 篇 xi’an key labora...
  • 4 篇 xi’an key labora...
  • 4 篇 key laboratory o...
  • 3 篇 south china univ...
  • 3 篇 xidian universit...
  • 3 篇 key laboratory o...
  • 3 篇 school of comput...
  • 3 篇 university of ch...
  • 3 篇 sun yat-sen univ...
  • 3 篇 institute of aut...
  • 2 篇 school of mathem...
  • 2 篇 department of ne...
  • 2 篇 riken aip japan.
  • 2 篇 massachusetts ge...
  • 2 篇 nuctech netherla...
  • 2 篇 warren alpert me...

作者

  • 9 篇 miao qiguang
  • 8 篇 song binbin
  • 5 篇 liu bo
  • 5 篇 feng guanwen
  • 5 篇 宋彬彬
  • 5 篇 wu jixuan
  • 5 篇 li yunan
  • 5 篇 song bin-bin
  • 4 篇 wu ji-xuan
  • 4 篇 timofte radu
  • 4 篇 吴继旋
  • 4 篇 huang wei
  • 4 篇 zhang cheng
  • 4 篇 zhang hao
  • 4 篇 bai hua
  • 4 篇 qiguang miao
  • 3 篇 jiao zhicheng
  • 3 篇 chen chen
  • 3 篇 qian zhihao
  • 3 篇 liu ruyi

语言

  • 71 篇 英文
  • 7 篇 其他
  • 2 篇 中文
检索条件"机构=Key Laboratory of Computer Vision and Systems"
79 条 记 录,以下是41-50 订阅
排序:
LES-Talker: Fine-Grained Emotion Editing for Talking Head Generation in Linear Emotion Space
arXiv
收藏 引用
arXiv 2024年
作者: Feng, Guanwen Qian, Zhihao Li, Yunan Jin, Siyu Miao, Qiguang Pun, Chi-Man School of Computer Science and Technology Xidian University Xi’an710071 China Xi’an Key Laboratory of Big Data and Intelligent Vision Shaanxi Xi’an710071 China Key Laboratory of Collaborative Intelligence Systems Ministry of Education Xidian University Xi’an710071 China Department of Computer and Information Science University of Macau 999078 China
While existing one-shot talking head generation models have achieved progress in coarse-grained emotion editing, there is still a lack of fine-grained emotion editing models with high interpretability. We argue that f... 详细信息
来源: 评论
Feature Enhanced Projection Network for Zero-shot Semantic Segmentation
Feature Enhanced Projection Network for Zero-shot Semantic S...
收藏 引用
IEEE International Conference on Robotics and Automation (ICRA)
作者: Hongchao Lu Longwei Fang Matthieu Lin Zhidong Deng Tsinghua University Beijing China Computer Vision Group Intel China State Key Laboratory of Intelligent Technology and Systems THUAI BNRist Center for Intelligent Connected Vehicles and Transportation Tsinghua University Beijing China
In environmental perception of autonomous driving, zero-shot semantic segmentation that can make prediction of new categories without using any labeled training samples is considered as a challenging task. One key ste... 详细信息
来源: 评论
Learning from large-scale noisy web data with ubiquitous reweighting for image classification
arXiv
收藏 引用
arXiv 2018年
作者: Li, Jia Song, Yafei Zhu, Jianfeng Cheng, Lele Su, Ying Ye, Lin Yuan, Pengcheng Han, Shumin State Key Laboratory of Virtual Reality Technology and Systems School of Computer Science and Engineering Beihang University Beijing100191 China Shenzhen Cyberspace Laboratory Shenzhen China National Engineering Laboratory for Video Technology School of Electronics Engineering and Computer Science Peking University Beijing100871 China Computer Vision Technology Department of Baidu Beijing100871 China
Many advances of deep learning techniques originate from the efforts of addressing the image classification task on large-scale datasets. However, the construction of such clean datasets is costly and time-consuming s... 详细信息
来源: 评论
Research on Image Matching Technology for the Spherical Stereo vision
Research on Image Matching Technology for the Spherical Ster...
收藏 引用
IEEE International Conference on Mechatronics and Automation
作者: Baofeng Zhang Na Liu Yingkui Jiao Yongchen Li Junchao Zhu Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems Tianjin University of Technology 391 Binshui Xidao Xiqing District Tianjin 300384 China Key Laboratory of Computer Vision and System Ministry of Education of China School of Computer and Communication Engineering Tianjin University of Technology 391 Binshui Xidao Xiqing District Tianjin 300384 China
The technique of stereo matching is an important research goal of spherical stereo vision system, which is widely used in visual navigation, motion analysis and panoramic surveillance areas. Fisheye lens can get view ... 详细信息
来源: 评论
Learning a saliency evaluation metric using crowdsourced perceptual judgments
arXiv
收藏 引用
arXiv 2018年
作者: Xia, Changqun Li, Jia Su, Jinming Borji, Ali State Key Laboratory of Virtual Reality Technology and Systems School of Computer Science and Engineering Beihang University Beijing China International Research Institute for Multidisciplinary Science Beihang University Beijing China Center for Research in Computer Vision Computer Science Department University of Central Florida OrlandoFL United States
In the area of human fixation prediction, dozens of computational saliency models are proposed to reveal certain saliency characteristics under different assumptions and definitions. As a result, saliency model benchm... 详细信息
来源: 评论
A Lightweight Attention Network for Camouflaged Object Fixation Prediction
A Lightweight Attention Network for Camouflaged Object Fixat...
收藏 引用
IEEE International Symposium on Industrial Electronics (ISIE)
作者: Qingbo Wu Guanxing Wu Shengyong Chen Key Laboratory of Computer Vision and Systems (Ministry of Education) Tianjin University of Technology Tianjin China Engineering Research Center of Learning-Based Intelligent System (Ministry of Education) Tianjin University of Technology Tianjin China School of Computer Science and Engineering Tianjin University of Technology Tianjin China
This paper proposes a novel encoder-decoder architecture for camouflaged object fixation prediction (COFP), which builds on a large-kernel decomposition technique and depth-wise separable convolution embedded attentio... 详细信息
来源: 评论
Advancing Virtual Reality Interaction: A Ring-Shaped Controller and Pose Tracking
Advancing Virtual Reality Interaction: A Ring-Shaped Control...
收藏 引用
IEEE International Conference on Robotics and Automation (ICRA)
作者: Zhuqing Zhang Dongxuan Li Jiayao Ma Yijia He Pan Ji Rong Xiong Hongdong Li Yue Wang State Key Laboratory of Industrial Control Technology and Institute of Cyber-Systems and Control Zhejiang University Zhejiang China Tencent Holdings Tencent XR Vision Labs Shenzhen China College of Engineering and Computer Science Australian National University Canberra
Ensuring robust tracking of controllers’ movement is critical for human-robot interaction in virtual reality (VR) scenarios. This paper proposes a robust tracking algorithm based on a novel wearable ring-shaped contr... 详细信息
来源: 评论
Exploration of Class Center for Fine-Grained Visual Classification
arXiv
收藏 引用
arXiv 2024年
作者: Yao, Hang Miao, Qiguang Zhao, Peipei Li, Chaoneng Li, Xin Feng, Guanwen Liu, Ruyi The School of Computer Science and Technology Xidian University Shaanxi Xi’an710071 China Xi’an Key Laboratory of Big Data and Intelligent Vision Shaanxi Xi’an710071 China Key Laboratory of Collaborative Intelligence Systems Ministry of Education Xidian University Xi’an710071 China The School of Mechanical Engineering Yanshan University Qinhuangdao066004 China
Different from large-scale classification tasks, fine-grained visual classification is a challenging task due to two critical problems: 1) evident intra-class variances and subtle inter-class differences, and 2) overf... 详细信息
来源: 评论
Edge-aware Feature Aggregation Network for Polyp Segmentation
arXiv
收藏 引用
arXiv 2023年
作者: Zhou, Tao Zhang, Yizhe Chen, Geng Zhou, Yi Wu, Ye Fan, Deng-Ping PCA Lab Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education The School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing China School of Computer Science and Engineering NPU Xi’an China School of Computer Science and Engineering Southeast University Nanjing China Computer Vision Lab ETH Zürich Zürich Switzerland
Precise polyp segmentation is vital for the early diagnosis and prevention of colorectal cancer (CRC) in clinical practice. However, due to scale variation and blurry polyp boundaries, it is still a challenging task t... 详细信息
来源: 评论
Deep Multi-Model Fusion for Single-Image Dehazing
Deep Multi-Model Fusion for Single-Image Dehazing
收藏 引用
International Conference on computer vision (ICCV)
作者: Zijun Deng Lei Zhu Xiaowei Hu Chi-Wing Fu Xuemiao Xu Qing Zhang Jing Qin Pheng-Ann Heng South China University of Technology Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institutes of Advanced Technology CAS The Chinese University of Hong Kong State Key Laboratory of Subtropical Building Science Guangdong Provincial Key Lab of Computational Intelligence and Cyberspace Information Sun Yat-sen University The Hong Kong Polytechnic University CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institutes of Advanced Technology CAS
This paper presents a deep multi-model fusion network to attentively integrate multiple models to separate layers and boost the performance in single-image dehazing. To do so, we first formulate the attentional featur... 详细信息
来源: 评论