咨询与建议

限定检索结果

文献类型

  • 944 篇 会议
  • 757 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 1,704 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,088 篇 工学
    • 827 篇 计算机科学与技术...
    • 723 篇 软件工程
    • 219 篇 信息与通信工程
    • 127 篇 控制科学与工程
    • 103 篇 生物工程
    • 92 篇 机械工程
    • 90 篇 光学工程
    • 67 篇 电气工程
    • 61 篇 生物医学工程(可授...
    • 50 篇 电子科学与技术(可...
    • 44 篇 化学工程与技术
    • 25 篇 仪器科学与技术
    • 23 篇 建筑学
    • 22 篇 土木工程
    • 22 篇 网络空间安全
  • 568 篇 理学
    • 343 篇 数学
    • 131 篇 物理学
    • 131 篇 生物学
    • 99 篇 统计学(可授理学、...
    • 46 篇 化学
    • 43 篇 系统科学
  • 349 篇 管理学
    • 200 篇 图书情报与档案管...
    • 163 篇 管理科学与工程(可...
    • 56 篇 工商管理
  • 63 篇 医学
    • 53 篇 临床医学
    • 40 篇 基础医学(可授医学...
    • 27 篇 药学(可授医学、理...
    • 17 篇 公共卫生与预防医...
  • 28 篇 农学
    • 23 篇 作物学
  • 27 篇 法学
    • 23 篇 社会学
  • 16 篇 经济学
  • 12 篇 教育学
  • 10 篇 哲学
  • 6 篇 艺术学
  • 5 篇 文学
  • 2 篇 军事学

主题

  • 94 篇 semantics
  • 81 篇 feature extracti...
  • 69 篇 information proc...
  • 59 篇 training
  • 58 篇 laboratories
  • 50 篇 computers
  • 38 篇 face recognition
  • 35 篇 data mining
  • 35 篇 humans
  • 34 篇 visualization
  • 30 篇 computational mo...
  • 29 篇 image segmentati...
  • 29 篇 machine learning
  • 28 篇 object detection
  • 28 篇 support vector m...
  • 28 篇 deep learning
  • 27 篇 contrastive lear...
  • 26 篇 accuracy
  • 26 篇 computer vision
  • 24 篇 decoding

机构

  • 432 篇 key laboratory o...
  • 270 篇 university of ch...
  • 83 篇 key laboratory o...
  • 64 篇 school of comput...
  • 62 篇 peng cheng labor...
  • 48 篇 key laboratory o...
  • 48 篇 school of comput...
  • 47 篇 the key laborato...
  • 44 篇 chinese academy ...
  • 43 篇 graduate univers...
  • 34 篇 key laboratory o...
  • 33 篇 key laboratory o...
  • 33 篇 school of cyber ...
  • 30 篇 school of comput...
  • 26 篇 school of artifi...
  • 26 篇 key laboratory o...
  • 24 篇 graduate univers...
  • 23 篇 chinese academy ...
  • 23 篇 college of compu...
  • 22 篇 institute of com...

作者

  • 86 篇 shi zhongzhi
  • 85 篇 zhongzhi shi
  • 76 篇 shiguang shan
  • 73 篇 xilin chen
  • 67 篇 huang qingming
  • 59 篇 liu qun
  • 44 篇 xu qianqian
  • 37 篇 feng yang
  • 36 篇 he qing
  • 33 篇 wen gao
  • 32 篇 yang zhiyong
  • 31 篇 qing he
  • 29 篇 zhuang fuzhen
  • 26 篇 yuefei sui
  • 26 篇 liang jiye
  • 25 篇 li hua
  • 25 篇 cao xiaochun
  • 24 篇 jiang shuqiang
  • 24 篇 liu yang
  • 24 篇 qingming huang

语言

  • 1,405 篇 英文
  • 244 篇 其他
  • 63 篇 中文
检索条件"机构=Key Laboratory of Computing Intelligence and Chinese Information Processing"
1704 条 记 录,以下是1-10 订阅
排序:
A Comprehensive Overview of CFN From a Commonsense Perspective
收藏 引用
Machine intelligence Research 2024年 第2期21卷 239-256页
作者: Ru Li Yunxiao Zhao Zhiqiang Wang Xuefeng Su Shaoru Guo Yong Guan Xiaoqi Han Hongyan Zhao Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education School of Computer and Information TechnologyShanxi UniversityTaiyuan 030006China
chinese FrameNet(CFN)is a scenario commonsense knowledge base(CKB)that plays an important role in research on chinese language *** is based on the theory of frame semantics and English FrameNet(FN).The CFN knowledge b... 详细信息
来源: 评论
HOZ++: Versatile Hierarchical Object-to-Zone Graph for Object Navigation
收藏 引用
IEEE Transactions on Pattern Analysis and Machine intelligence 2025年 第7期47卷 5958-5975页
作者: Zhang, Sixian Song, Xinhang Yu, Xinyao Bai, Yubing Guo, Xinlong Li, Weijie Jiang, Shuqiang Key Laboratory of Intelligent Information Processing Institute of Computing Technology Beijing100190 China University of Chinese Academy of Sciences Beijing100049 China
The goal of object navigation task is to reach the expected objects using visual information in unseen environments. Previous works typically implement deep models as agents that are trained to predict actions based o... 详细信息
来源: 评论
Structure-to-word dynamic interaction model for abstractive sentence summarization
收藏 引用
Neural computing and Applications 2025年 第9期37卷 6567-6581页
作者: Guan, Yong Guo, Shaoru Li, Ru School of Computer & Information Technology Shanxi University Shanxi China Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education Shanxi University Shanxi China
Abstractive text summarization aims to capture important information from text and integrate contextual information to guide the summary generation. However, effective integration of important and relevant information... 详细信息
来源: 评论
Audio-guided self-supervised learning for disentangled visual speech representations
收藏 引用
Frontiers of Computer Science 2024年 第6期18卷 277-279页
作者: Dalu FENG Shuang YANG Shiguang SHAN Xilin CHEN Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences Institute of Computing TechnologyChinese Academy of SciencesBeijing 100190China University of Chinese Academy of Sciences Beijing 100049China
1 *** visual speech representations from talking face videos is an important problem for several speech-related tasks,such as lip reading,talking face generation,and audiovisual speech separation[1,2].The key difficul... 详细信息
来源: 评论
Improving Generalization in Offline Reinforcement Learning via Latent Distribution Representation Learning  39
Improving Generalization in Offline Reinforcement Learning v...
收藏 引用
39th Annual AAAI Conference on Artificial intelligence, AAAI 2025
作者: Wang, Da Li, Lin Wei, Wei Yu, Qixian Hao, Jianye Liang, Jiye Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education School of Computer and Information Technology Shanxi University Taiyuan China College of Intelligence and Computing Tianjin University Tianjin China
Dealing with the distribution shift is a significant challenge when building offline reinforcement learning (RL) models that can generalize from a static dataset to out-of-distribution (OOD) scenarios. Previous approa... 详细信息
来源: 评论
SURE: Mutually Visible Objects and Self-generated Candidate Labels For Relation Extraction  31
SURE: Mutually Visible Objects and Self-generated Candidate ...
收藏 引用
31st International Conference on Computational Linguistics, COLING 2025
作者: Feng, Yuxuan Chen, Qian Wu, Qianyou Guo, Xin Wang, Suge School of Computer and Information Technology Shanxi University China Key Laboratory of Computational Intelligence and Chinese Information Processing China
Joint relation extraction models effectively mitigate the error propagation problem inherently present in pipeline models. Nevertheless, joint models face challenges including high computational complexity, complex ne... 详细信息
来源: 评论
Improving Generalization in Offline Reinforcement Learning via Adversarial Data Splitting  41
Improving Generalization in Offline Reinforcement Learning v...
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Wang, Da Li, Lin Wei, Wei Yu, Qixian Hao, Jianye Liang, Jiye Key Laboratory of Computational Intelligence and Chinese Information Processing Ministry of Education School of Computer and Information Technology Shanxi University Taiyuan China College of Intelligence and Computing Tianjin University Tianjin China
Offline Reinforcement Learning (RL) commonly suffers from the out-of-distribution (OOD) overestimation issue due to the distribution shift. Prior work gradually shifts their focus from suppressing OOD overestimation t... 详细信息
来源: 评论
DMFVAE:miRNA-disease associations prediction based on deep matrix factorization method with variational autoencoder
收藏 引用
Frontiers of Computer Science 2024年 第6期18卷 259-270页
作者: Pijing WEI Qianqian WANG Zhen GAO Ruifen CAO Chunhou ZHENG Information Materials and Intelligent Sensing Laboratory of Anhui Province Institutes of Physical Science and Information TechnologyAnhui UniversityHefei 230601China Key Lab of Intelligent Computing and Signal Processing of Ministry of Education School of Computer Science and TechnologyAnhui UniversityHefei 230601China Key Lab of Intelligent Computing and Signal Processing of Ministry of Education School of Artificial IntelligenceAnhui UniversityHefei 230601China
MicroRNAs(miRNAs)are closely related to numerous complex human diseases,therefore,exploring miRNA-disease associations(MDAs)can help people gain a better understanding of complex disease *** increasing number of compu... 详细信息
来源: 评论
Dynamic Uncertainty Estimation for Offline Reinforcement Learning  39
Dynamic Uncertainty Estimation for Offline Reinforcement Lea...
收藏 引用
39th Annual AAAI Conference on Artificial intelligence, AAAI 2025
作者: Wang, Jiesheng Li, Lin Wei, Wei Zhang, Yujia Yang, Xin Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education School of Computer and Information Technology Shanxi University Shanxi Taiyuan China School of Computing and Artificial Intelligence Southwestern University of Finance and Economics Sichuan Chengdu China
Offline reinforcement learning confronts the distributional shift challenge, a consequence of learning policy from static datasets. Current methods primarily handle this issue by aligning the learned policy with the b... 详细信息
来源: 评论
From Static to Dynamic: Adapting Landmark-Aware Image Models for Facial Expression Recognition in Videos
收藏 引用
IEEE Transactions on Affective computing 2025年 第2期16卷 624-638页
作者: Chen, Yin Li, Jia Shan, Shiguang Wang, Meng Hong, Richang Hefei University of Technology School of Computer Science and Information Engineering Hefei230601 China Chinese Academy of Sciences Key Laboratory of Intelligent Information Processing Institute of Computing Technology Beijing100190 China University of Chinese Academy of Sciences Beijing100049 China
Dynamic facial expression recognition (DFER) in the wild is still hindered by data limitations, e.g., insufficient quantity and diversity of pose, occlusion and illumination, as well as the inherent ambiguity of facia... 详细信息
来源: 评论