咨询与建议

限定检索结果

文献类型

  • 221 篇 会议
  • 203 篇 期刊文献

馆藏范围

  • 424 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 285 篇 工学
    • 230 篇 计算机科学与技术...
    • 195 篇 软件工程
    • 72 篇 信息与通信工程
    • 48 篇 电气工程
    • 35 篇 控制科学与工程
    • 35 篇 生物工程
    • 22 篇 电子科学与技术(可...
    • 15 篇 机械工程
    • 15 篇 光学工程
    • 12 篇 化学工程与技术
    • 11 篇 交通运输工程
    • 11 篇 生物医学工程(可授...
    • 11 篇 网络空间安全
    • 9 篇 建筑学
    • 7 篇 仪器科学与技术
    • 7 篇 动力工程及工程热...
    • 7 篇 土木工程
  • 123 篇 理学
    • 66 篇 数学
    • 37 篇 生物学
    • 27 篇 物理学
    • 24 篇 统计学(可授理学、...
    • 11 篇 化学
    • 10 篇 系统科学
  • 73 篇 管理学
    • 39 篇 管理科学与工程(可...
    • 37 篇 图书情报与档案管...
    • 11 篇 工商管理
  • 14 篇 法学
    • 10 篇 社会学
  • 10 篇 医学
    • 9 篇 临床医学
    • 7 篇 基础医学(可授医学...
  • 7 篇 经济学
    • 7 篇 应用经济学
  • 2 篇 军事学
  • 1 篇 教育学

主题

  • 19 篇 feature extracti...
  • 17 篇 semantics
  • 15 篇 machine learning
  • 12 篇 privacy
  • 11 篇 contrastive lear...
  • 11 篇 training
  • 10 篇 deep learning
  • 10 篇 optimization
  • 10 篇 graph neural net...
  • 8 篇 task analysis
  • 8 篇 anomaly detectio...
  • 8 篇 federated learni...
  • 7 篇 conferences
  • 7 篇 sensors
  • 7 篇 forecasting
  • 6 篇 data privacy
  • 6 篇 speech processin...
  • 6 篇 neural networks
  • 6 篇 data mining
  • 6 篇 computational mo...

机构

  • 54 篇 school of comput...
  • 39 篇 jiangsu key labo...
  • 37 篇 jiangsu key labo...
  • 30 篇 jiangsu key labo...
  • 20 篇 key laboratory o...
  • 16 篇 jiangsu key labo...
  • 15 篇 school of cyber ...
  • 13 篇 chongqing key la...
  • 11 篇 school of comput...
  • 10 篇 nanjing universi...
  • 10 篇 key laboratory o...
  • 9 篇 key lab. of inte...
  • 9 篇 south china univ...
  • 9 篇 nanjing universi...
  • 9 篇 school of cybers...
  • 9 篇 state key labora...
  • 9 篇 peng cheng labor...
  • 8 篇 key laboratory o...
  • 8 篇 school of comput...
  • 8 篇 chongqing key la...

作者

  • 36 篇 xu xiaolong
  • 26 篇 xiaolong xu
  • 21 篇 wang guoyin
  • 16 篇 huang qingming
  • 16 篇 xu qianqian
  • 11 篇 yang zhiyong
  • 11 篇 tao li
  • 10 篇 xia shuyin
  • 10 篇 liu jun
  • 10 篇 cao xiaochun
  • 8 篇 xiao bin
  • 8 篇 jia xu
  • 8 篇 yun li
  • 7 篇 liu qun
  • 7 篇 chen ke-jia
  • 7 篇 zou zhiqiang
  • 7 篇 xuemiao xu
  • 7 篇 shengfeng he
  • 7 篇 xu jia
  • 7 篇 lijie xu

语言

  • 386 篇 英文
  • 36 篇 其他
  • 2 篇 中文
检索条件"机构=Key Laboratory of Cyberspace Big Data Intelligent Security"
424 条 记 录,以下是281-290 订阅
排序:
Discrimination-Aware Domain Adversarial Neural Network
收藏 引用
Journal of Computer Science & Technology 2020年 第2期35卷 259-267页
作者: Yun-Yun Wang Jian-Min Gu Chao Wang Song-Can Chen Hui Xue College of Computer Science and Engineering Nanjing University of Posts and Telecommunications Nanjing 210046China Jiangsu Key Laboratory of Big Data Security and Intelligent Processing Nanjing 210046China College of Computer Science and Technology/College of Artificial Intelligence Nanjing University of Aeronautics and AstronauticsNanjing 210023China Key Laboratory of Pattern Analysis and Machine Intelligence Ministry of Industry and Information Technology Nanjing 210023China School of Computer Science and Engineering Southeast UniversityNanjing 210096China
The domain adversarial neural network(DANN)methods have been successfully proposed and attracted much attention *** DANNs,a discriminator is trained to discriminate the domain labels of features generated by a generat... 详细信息
来源: 评论
Network data Classification Mechanism for Intrusion Detection System
Network Data Classification Mechanism for Intrusion Detectio...
收藏 引用
International Conference on Computer Supported Cooperative Work in Design
作者: Shuai Jiang Xiaolong Xu Jiangsu Key Laboratory of Big Data Security & Intelligent Processing Nanjing University of Posts and Telecommunications Nanjing China School of Computer Science Nanjing University of Posts and Telecommunications Nanjing China
Intrusion detection system (IDS), as a network security device, monitors network data in real time and responds actively when it detects suspicious transmissions. However, suffered from the large amount of redundancy ... 详细信息
来源: 评论
TSC-ECFA:A Trusted Service Composition Scheme for Edge Cloud
TSC-ECFA:A Trusted Service Composition Scheme for Edge Cloud
收藏 引用
International Conference on Parallel and Distributed Systems (ICPADS)
作者: Yu Jiang Xiaolong Xu Kunda Lin Weihua Duan Jiangsu Key Laboratory of Big Data Security & Intelligent Processing Nanjing University of Posts and Telecommunications Nanjing China School of Computer Science Nanjing University of Posts and Telecommunications Nanjing China
In order to select a composition scheme that meets user's needs and high performance from large-scale web services in the edge cloud, this paper proposes a trusted service composition optimization scheme called TS... 详细信息
来源: 评论
A Hybrid Blockchain-Based Identity Authentication Scheme for Mobile Crowd Sensing
SSRN
收藏 引用
SSRN 2022年
作者: Taochun, Wang Huimin, Shen Jian, Chen Fulong, Chen Qingshan, Wu Dong, Xie School of Computer and Information Anhui Normal University Wuhu241002 China Anhui Engineering Research Centers of Medical Big Data Intelligent System Anhui Normal University Wuhu241002 China Anhui Key Laboratory of Network and Information Security Anhui Normal University Wuhu241002 China
With the continuous innovation and popularization of mobile smart devices, the application of Mobile Crowd Sensing (MCS) has been widely studied. However, the existing centralized MCS applications that use servers for... 详细信息
来源: 评论
Inductive Subgraph Embedding for Link Prediction
arXiv
收藏 引用
arXiv 2021年
作者: Miao, Chunyu Xie, Chenxuan Zhou, Jiajun Yu, Shanqing Chen, Lina Xuan, Qi The College of Mathematics Physics and Information Engineering Zhejiang Normal University Zhejiang Jinhua310023 China The Key Laboratory of Peace-building Big Data of Zhejiang Province Hangzhou310051 China The Institute of Cyberspace Security Zhejiang University of Technology Hangzhou310023 China The Binjiang Cyberspace Security Institute of ZJUT Hangzhou310023 China
Link prediction, which aims to infer missing edges or predict future edges based on currently observed graph connections, has emerged as a powerful technique for diverse applications such as recommendation, relation c... 详细信息
来源: 评论
Estimating Power Consumption of Containers and Virtual Machines in data Centers
Estimating Power Consumption of Containers and Virtual Machi...
收藏 引用
IEEE International Conference on Cluster Computing
作者: Xusheng Zhang Ziyu Shen Bin Xia Zheng Liu Yun Li Jiangsu Key Laboratory of Big Data Security & Intelligent Processing Nanjing University of Posts and Telecommunications
Virtualization technologies provide solutions of cloud computing. Virtual resource scheduling is a crucial task in data centers, and the power consumption of virtual resources is a critical foundation of virtualizatio... 详细信息
来源: 评论
AdAUC: End-to-end Adversarial AUC Optimization Against Long-tail Problems
arXiv
收藏 引用
arXiv 2022年
作者: Hou, Wenzheng Xu, Qianqian Yang, Zhiyong Bao, Shilong He, Yuan Huang, Qingming Key Laboratory of Intelligent Information Processing Institute of Computing Technology CAS Beijing China School of Computer Science and Technology University of Chinese Academy of Sciences Beijing China State Key Laboratory of Information Security Institute of Information Engineering CAS Beijing China School of Cyber Security University of Chinese Academy of Sciences Beijing China Alibaba Group Beijing China Key Laboratory of Big Data Mining and Knowledge Management Chinese Academy of Sciences Beijing China Artificial Intelligence Research Center Peng Cheng Laboratory Shenzhen China
It is well-known that deep learning models are vulnerable to adversarial examples. Existing studies of adversarial training have made great progress against this challenge. As a typical trait, they often assume that t... 详细信息
来源: 评论
A Tutorial on Movable Antennas for Wireless Networks
收藏 引用
IEEE Communications Surveys and Tutorials 2025年
作者: Zhu, Lipeng Ma, Wenyan Mei, Weidong Zeng, Yong Wu, Qingqing Ning, Boyu Xiao, Zhenyu Shao, Xiaodan Zhang, Jun Zhang, Rui National University of Singapore Department of Electrical and Computer Engineering 117583 Singapore National Key Laboratory of Wireless Communications Chengdu611731 China Southeast University National Mobile Communications Research Laboratory Frontiers Science Center for Mobile Information Communication and Security Nanjing210096 China Purple Mountain Laboratories Nanjing211111 China Shanghai Jiao Tong University Department of Electronic Engineering Shanghai200240 China Beihang University School of Electronic and Information Engineering Beijing100191 China University of Waterloo Department of Electrical and Computer Engineering WaterlooONN2L 3G1 Canada Beijing Institute of Technology State Key Laboratory of CNS/ATM Miit Key Laboratory of Complex-field Intelligent Sensing Beijing100081 China The Chinese University of HongKong School of Science and Engineering Shenzhen Research Institute of Big Data Guangdong Shenzhen518172 China
Movable antenna (MA) has been recognized as a promising technology to enhance the performance of wireless communication and sensing by enabling antenna movement. Such a significant paradigm shift from conventional fix... 详细信息
来源: 评论
PSSPR: A Source Location Privacy Protection Scheme Based on Sector Phantom Routing in WSNs
PSSPR: A Source Location Privacy Protection Scheme Based on ...
收藏 引用
IEEE International Symposium on Dependable, Autonomic and Secure Computing (DASC)
作者: Jing Sun Yuling Chen Tao Li Jia Liu Yixian Yang State Key Laboratory of Public Big Data College of Computer Science and Technology Guizhou University Guiyang China Air Force Engineering University Xi'an China School of Cyberspace Security Beijing University of Posts and Telecommnuications Beijing China
Source location privacy, occupying an unshakable status in wireless sensor networks, has a profound influence on the widespread application of wireless sensor networks (WSNs). Most privacy policies that introduce phan... 详细信息
来源: 评论
Learning Task-aware Robust Deep Learning Systems
arXiv
收藏 引用
arXiv 2020年
作者: Han, Keji Li, Yun Long, Xianzhong Ge, Yao Nanjing University of Posts and Telecommunications China Jiangsu Key Laboratory of Big Data Security & Intelligent Processing
Many works demonstrate that deep learning system is vulnerable to adversarial attack. A deep learning system consists of two parts: the deep learning task and the deep model. Nowadays, most existing works investigate ... 详细信息
来源: 评论