咨询与建议

限定检索结果

文献类型

  • 184 篇 期刊文献
  • 129 篇 会议

馆藏范围

  • 313 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 215 篇 工学
    • 153 篇 计算机科学与技术...
    • 139 篇 软件工程
    • 47 篇 信息与通信工程
    • 37 篇 生物工程
    • 28 篇 控制科学与工程
    • 22 篇 化学工程与技术
    • 17 篇 土木工程
    • 16 篇 建筑学
    • 14 篇 电气工程
    • 12 篇 电子科学与技术(可...
    • 12 篇 交通运输工程
    • 10 篇 仪器科学与技术
    • 9 篇 光学工程
    • 7 篇 机械工程
    • 7 篇 材料科学与工程(可...
    • 7 篇 生物医学工程(可授...
  • 128 篇 理学
    • 71 篇 数学
    • 41 篇 生物学
    • 32 篇 统计学(可授理学、...
    • 28 篇 物理学
    • 20 篇 化学
    • 10 篇 系统科学
    • 9 篇 大气科学
  • 66 篇 管理学
    • 33 篇 管理科学与工程(可...
    • 33 篇 图书情报与档案管...
    • 16 篇 工商管理
  • 15 篇 农学
    • 12 篇 作物学
  • 13 篇 经济学
    • 13 篇 应用经济学
  • 10 篇 法学
    • 10 篇 社会学
  • 8 篇 教育学
    • 8 篇 教育学
  • 5 篇 医学

主题

  • 11 篇 semantics
  • 10 篇 deep learning
  • 8 篇 data mining
  • 7 篇 conferences
  • 7 篇 learning systems
  • 7 篇 recommender syst...
  • 7 篇 education
  • 7 篇 time series
  • 7 篇 forecasting
  • 6 篇 knowledge engine...
  • 6 篇 task analysis
  • 6 篇 graph neural net...
  • 6 篇 synthetic apertu...
  • 5 篇 reinforcement le...
  • 5 篇 semantic segment...
  • 5 篇 long short-term ...
  • 5 篇 neural networks
  • 5 篇 computational mo...
  • 5 篇 machine learning
  • 5 篇 embeddings

机构

  • 32 篇 anhui province k...
  • 32 篇 state key labora...
  • 30 篇 anhui province k...
  • 21 篇 henan key labora...
  • 15 篇 anhui province k...
  • 14 篇 school of comput...
  • 13 篇 henan engineerin...
  • 11 篇 shenzhen interna...
  • 11 篇 national enginee...
  • 11 篇 college of compu...
  • 11 篇 school of geogra...
  • 8 篇 university of sc...
  • 8 篇 intelligent perc...
  • 8 篇 key laboratory o...
  • 8 篇 school of comput...
  • 8 篇 henan engineerin...
  • 8 篇 school of comput...
  • 7 篇 anhui province t...
  • 7 篇 key laboratory o...
  • 7 篇 college of manag...

作者

  • 61 篇 chen enhong
  • 61 篇 liu qi
  • 38 篇 qi liu
  • 30 篇 enhong chen
  • 28 篇 huang zhenya
  • 17 篇 li zhi
  • 13 篇 wu likang
  • 12 篇 xu linli
  • 12 篇 zhenya huang
  • 11 篇 cheng mingyue
  • 10 篇 zhang zaixi
  • 9 篇 wang hao
  • 9 篇 wang fei
  • 8 篇 xiaoke zhu
  • 8 篇 wang shijin
  • 8 篇 xu tong
  • 8 篇 jianhui ma
  • 8 篇 zhao hongke
  • 7 篇 guo zhengwei
  • 7 篇 xiaopan chen

语言

  • 296 篇 英文
  • 14 篇 其他
  • 3 篇 中文
检索条件"机构=Key Laboratory of Data Analysis and Application"
313 条 记 录,以下是191-200 订阅
排序:
Learning the Implicit Semantic Representation on Graph-Structured data
arXiv
收藏 引用
arXiv 2021年
作者: Wu, Likang Li, Zhi Zhao, Hongke Liu, Qi Wang, Jun Zhang, Mengdi Chen, Enhong Anhui Province Key Laboratory of Big Data Analysis and Application University of Science and Technology of China Hefei China Tianjin University Tianjin China Meituan-Dianping Group Beijing China
Existing representation learning methods in graph convolutional networks are mainly designed by describing the neighborhood of each node as a perceptual whole, while the implicit semantic associations behind highly co... 详细信息
来源: 评论
Towards Variable-Length Textual Adversarial Attacks
arXiv
收藏 引用
arXiv 2021年
作者: Guo, Junliang Zhang, Zhirui Zhang, Linlin Xu, Linli Chen, Boxing Chen, Enhong Luo, Weihua Anhui Province Key Laboratory of Big Data Analysis and Application School of Computer Science and Technology University of Science and Technology of China China Alibaba DAMO Academy Zhejiang University China
Adversarial attacks have shown the vulnerability of machine learning models, however, it is non-trivial to conduct textual adversarial attacks on natural language processing tasks due to the discreteness of data. Most... 详细信息
来源: 评论
Spatial fuzzy C-means clustering and deep belief network for change detection in synthetic aperture radar images  5
Spatial fuzzy C-means clustering and deep belief network for...
收藏 引用
IET International Radar Conference 2020, IET IRC 2020
作者: Qi, Wenwen Wu, Lin Guo, Zhengwei Huang, Dan College of Computer and Information Engineering Henan University Kaifeng475004 China Henan Key Laboratory of Big Data Analysis and Processing Henan University Kaifeng475004 China Henan Engineering Research Center of Intelligent Technology and Application Henan University Kaifeng475004 China College of Environment and Planning Henan University Kaifeng475004 China Department of Laboratory and Equipment Management Henan University Kaifeng475004 China
In this study, spatial fuzzy c-means (SFCM) clustering and deep belief network (DBN) method is presented for change detection in SAR images. There are three primary steps of this approach, they are given as follows: 1... 详细信息
来源: 评论
Adaptive normalization for non-stationary time series forecasting: a temporal slice perspective  23
Adaptive normalization for non-stationary time series foreca...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Zhiding Liu Mingyue Cheng Zhi Li Zhenya Huang Qi Liu Yanhu Xie Enhong Chen Anhui Province Key Laboratory of Big Data Analysis and Application University of Science and Technology of China and State Key Laboratory of Cognitive Intelligence Shenzhen International Graduate School Tsinghua University The First Affiliated Hospital of University of Science and Technology of China
Deep learning models have progressively advanced time series forecasting due to their powerful capacity in capturing sequence dependence. Nevertheless, it is still challenging to make accurate predictions due to the e...
来源: 评论
Modeling Offline Knowledge Evolution Effect for Online Knowledge Tracing
Modeling Offline Knowledge Evolution Effect for Online Knowl...
收藏 引用
International Conference on Tools for Artificial Intelligence (ICTAI)
作者: Xiaonan Zeng Shuanghong Shen Zhenya Huang Enhong Chen Yu Su Shijin Wang Anhui Province Key Laboratory of Big Data Analysis and Application School of Data Science University of Science and Technology of China & State Key Laboratory of Cognitive Intelligence Hefei China Anhui Province Key Laboratory of Big Data Analysis and Application School of Computer Science and Technology University of Science and Technology of China & State Key Laboratory of Cognitive Intelligence Hefei China Hefei Comprehensive National Science Center School of Computer Science and Technology Hefei Normal University & Institute of Artificial Intelligence Hefei China State Key Laboratory of Cognitive Intelligence & iFLYTEK AI Research (Central China) iFLYTEK Co. Ltd Hefei China
Knowledge Tracing (KT) focuses on tracing stu-dents' evolving knowledge state in the process of question-answering, which has been widely applied to online learning systems. Existing KT methods leverage students&#... 详细信息
来源: 评论
Graph Adaptive Semantic Transfer for Cross-domain Sentiment Classification
arXiv
收藏 引用
arXiv 2022年
作者: Zhang, Kai Zhang, Kun Liu, Qi Huang, Zhenya Zhang, Mengdi Wu, Wei Cheng, Mingyue Chen, Enhong Anhui Province Key Lab. of Big Data Analysis and Application University of S&T of China State Key Laboratory of Cognitive Intelligence Hefei China School of Computer Science and Information Engineering Hefei University of Technology Hefei China Meituan Beijing China Anhui Province Key Lab. of Big Data Analysis and Application University of S&T of China Hefei China
Cross-domain sentiment classification (CDSC) aims to use the transferable semantics learned from the source domain to predict the sentiment of reviews in the unlabeled target domain. Existing studies in this task atta... 详细信息
来源: 评论
A-Map: Interactive Visual Exploration of Intercity Accessibility Dynamics Based on Railway Network data
A-Map: Interactive Visual Exploration of Intercity Accessibi...
收藏 引用
Pacific (formerly Asia-Pacific APVIS) Visualization Symposium
作者: Kaichen Nie Hanning Shao Yuchu Luo Min Tian Hao Wu Wei Zeng Xin Fu Xiaoru Yuan Key Laboratory of Machine Perception (Ministry of Education) School of AI Peking University Hong Kong University of Science and Technology Guangzhou Chang’an University National Engineering Laboratory for Big Data Analysis and Application Peking University
Railway transportation is closely linked to everyday lives while also aiding domain experts in analyzing national or regional development. However, discrepancies between travel time reduced by railways and actual dist... 详细信息
来源: 评论
Stable and Diverse: A Unified Approach for Computerized Adaptive Testing
Stable and Diverse: A Unified Approach for Computerized Adap...
收藏 引用
IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS)
作者: Yuting Ning Ye Liu Zhenya Huang Haoyang Bi Qi Liu Enhong Chen Dan Zhang Anhui Province Key Laboratory of Big Data Analysis and Application School of Computer Science and Technology University of Science and Technology of China School of Data Science University of Science and Technology of China iFLYTEK Research iFLYTEK CO. LTD
Computerized Adaptive Testing (CAT), aiming to provide personalized tests for each examinee, is an emerging task in the intelligent education field. A CAT system selects questions step by step according to the knowled... 详细信息
来源: 评论
APGL4SR: A Generic Framework with Adaptive and Personalized Global Collaborative Information in Sequential Recommendation
arXiv
收藏 引用
arXiv 2023年
作者: Yin, Mingjia Wang, Hao Xu, Xiang Wu, Likang Zhao, Sirui Guo, Wei Liu, Yong Tang, Ruiming Lian, Defu Chen, Enhong Anhui Province Key Laboratory of Big Data Analysis and Application University of Science and Technology of China State Key Laboratory of Cognitive Intelligence Hefei China Huawei Singapore Research Center Singapore Huawei Noah's Ark Lab Shenzhen China
The sequential recommendation system has been widely studied for its promising effectiveness in capturing dynamic preferences buried in users' sequential behaviors. Despite the considerable achievements, existing ... 详细信息
来源: 评论
A Novel Approach for Auto-Formulation of Optimization Problems
arXiv
收藏 引用
arXiv 2023年
作者: Ning, Yuting Liu, Jiayu Qin, Longhu Xiao, Tong Xue, Shangzi Huang, Zhenya Liu, Qi Chen, Enhong Wu, Jinze Anhui Province Key Laboratory of Big Data Analysis and Application School of Computer Science and Technology University of Science and Technology of China China State Key Laboratory of Cognitive Intelligence China iFLYTEK AI Research iFLYTEK Co. Ltd China
In the Natural Language for Optimization (NL4Opt) NeurIPS 2022 competition1, competitors focus on improving the accessibility and usability of optimization solvers, with the aim of subtask 1: recognizing the semantic ... 详细信息
来源: 评论