咨询与建议

限定检索结果

文献类型

  • 484 篇 会议
  • 336 篇 期刊文献

馆藏范围

  • 820 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 563 篇 工学
    • 405 篇 计算机科学与技术...
    • 357 篇 软件工程
    • 142 篇 信息与通信工程
    • 88 篇 生物工程
    • 59 篇 光学工程
    • 58 篇 生物医学工程(可授...
    • 55 篇 控制科学与工程
    • 48 篇 机械工程
    • 44 篇 电气工程
    • 42 篇 化学工程与技术
    • 41 篇 电子科学与技术(可...
    • 22 篇 仪器科学与技术
    • 22 篇 土木工程
    • 20 篇 建筑学
    • 19 篇 交通运输工程
    • 14 篇 材料科学与工程(可...
  • 302 篇 理学
    • 167 篇 数学
    • 90 篇 生物学
    • 77 篇 物理学
    • 56 篇 统计学(可授理学、...
    • 30 篇 化学
    • 23 篇 系统科学
  • 135 篇 管理学
    • 70 篇 管理科学与工程(可...
    • 63 篇 图书情报与档案管...
    • 28 篇 工商管理
  • 44 篇 医学
    • 37 篇 临床医学
    • 32 篇 基础医学(可授医学...
    • 22 篇 药学(可授医学、理...
  • 27 篇 法学
    • 23 篇 社会学
  • 15 篇 经济学
    • 15 篇 应用经济学
  • 14 篇 农学
  • 12 篇 教育学
  • 3 篇 军事学
  • 2 篇 文学

主题

  • 29 篇 semantics
  • 25 篇 feature extracti...
  • 24 篇 deep learning
  • 21 篇 training
  • 16 篇 object detection
  • 15 篇 convolution
  • 14 篇 neural networks
  • 14 篇 machine learning
  • 14 篇 accuracy
  • 13 篇 predictive model...
  • 11 篇 anomaly detectio...
  • 11 篇 knowledge graph
  • 11 篇 computational mo...
  • 11 篇 synthetic apertu...
  • 11 篇 forecasting
  • 10 篇 image enhancemen...
  • 10 篇 signal processin...
  • 10 篇 data models
  • 9 篇 visualization
  • 9 篇 remote sensing

机构

  • 148 篇 guangdong key la...
  • 92 篇 henan key labora...
  • 69 篇 school of comput...
  • 53 篇 school of comput...
  • 50 篇 school of comput...
  • 39 篇 school of data a...
  • 34 篇 shaanxi key labo...
  • 33 篇 school of artifi...
  • 31 篇 sun yat-sen univ...
  • 28 篇 shaanxi key labo...
  • 25 篇 school of comput...
  • 19 篇 college of compu...
  • 18 篇 microsoft resear...
  • 18 篇 xi'an key labora...
  • 16 篇 peng cheng labor...
  • 16 篇 key laboratory o...
  • 14 篇 henan university...
  • 13 篇 henan engineerin...
  • 13 篇 shaanxi key labo...
  • 11 篇 henan key labora...

作者

  • 49 篇 yin jian
  • 26 篇 wang zhongmin
  • 23 篇 wu di
  • 21 篇 su qinliang
  • 19 篇 chen yanping
  • 19 篇 yu jianxing
  • 16 篇 liu yang
  • 15 篇 zhang lei
  • 15 篇 zuo xianyu
  • 15 篇 wang lihui
  • 14 篇 xia hong
  • 14 篇 duan nan
  • 14 篇 lei zhang
  • 14 篇 jian yin
  • 14 篇 zhongmin wang
  • 13 篇 tang duyu
  • 13 篇 gao cong
  • 13 篇 li ning
  • 13 篇 zhou yipeng
  • 12 篇 xiaoke zhu

语言

  • 764 篇 英文
  • 51 篇 其他
  • 4 篇 中文
检索条件"机构=Key Laboratory of Data Analysis and Image Processing"
820 条 记 录,以下是451-460 订阅
排序:
Real-Time Semantic Segmentation Algorithm Based on Tversky Loss Function and Mixed Pooling
Real-Time Semantic Segmentation Algorithm Based on Tversky L...
收藏 引用
International Conference on Networking and Network Applications (NaNA)
作者: Peng Xu Ziyi Zhao Sugang Ma Xi'an Science and Technology Museum Xi'an Shaanxi China School of Computer Science and Technology Xi'an University of Posts and Telecommunications Xi'an Shaanxi China Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing School of Computer Science and Technology Xi'an University of Posts and Telecommunications Xi'an Shaanxi China
In recent years, semantic segmentation methods based on deep learning have made remarkable developments. Despite achieving high segmentation accuracy, the performance of real-time segmentation methods cannot satisfy r...
来源: 评论
Low-Rank Reduced Biquaternion Tensor Ring Decomposition and Tensor Completion
arXiv
收藏 引用
arXiv 2025年
作者: Luo, Hui Liu, Xin Liu, Wei Zhang, Yang School of Computer Science and Engineering Faculty of Innovation Engineering Macau University of Science and Technology China Macau Institute of Systems Engineering Faculty of Innovation Engineering Macau University of Science and Technology China School of Artificial Intelligence Sun Yat-sen University The Guangdong Key Laboratory of Big Data Analysis and Processing Guangzhou China Department of Mathematics University of Manitoba MB Canada
We define the reduced biquaternion tensor ring (RBTR) decomposition and provide a detailed exposition of the corresponding algorithm RBTR-SVD. Leveraging RBTR decomposition, we propose a novel low-rank tensor completi... 详细信息
来源: 评论
Boosting segmentation accuracy of the deep learning models based on the synthetic data generation  4
Boosting segmentation accuracy of the deep learning models b...
收藏 引用
4th International Workshop on Photogrammetric and Computer Vision Techniques for Video Surveillance, Biometrics and Biomedicine, PSBB 2021
作者: Danilov, V.V. Gerget, O.M. Kolpashchikov, D.Yu. Laptev, N.V. Manakov, R.A. Hérnandez-Gómez, L.A. Alvarez, F. Ledesma-Carbayo, M.J. Research Laboratory for Processing and Analysis of Big Data Tomsk Polytechnic University Tomsk Russia Department of Software Engineering Research Laboratory"Gamma Technologies" Almaty Kazakhstan Department of Signals Systems and Radiocommunications Technical University of Madrid Madrid Spain Group of Application of Visual Telecommunications Technical University of Madrid Madrid Spain Biomedical Image Technologies Group Technical University of Madrid Madrid Spain
In the era of data-driven machine learning algorithms, data represents a new oil. The application of machine learning algorithms shows they need large heterogeneous datasets that crucially are correctly labeled. Howev... 详细信息
来源: 评论
Semi-supervised Segmentation and Quantization Algorithm for Infarct Size Measurement of Rat Heart Sections
Semi-supervised Segmentation and Quantization Algorithm for ...
收藏 引用
International Conference on Computer and Communications (ICCC)
作者: Xiaoke Zhu Yulong Cai Xiaopan Chen Qi Hu Lingyun Dong Caihong Yuan School of Computer and Information Engineering Henan University Kaifeng China Henan Engineering Research Center of Intelligent Technology and Application Henan University Henan Key Laboratory of Big Data Analysis and Processing Henan University Kaifeng China
Segmentation of rat heart section images and infarct area quantization are essential components of infarct size measurement in processing data from animal experiments on ischemic heart disease. Previously, the task of... 详细信息
来源: 评论
Syntax-enhanced pre-trained model  59
Syntax-enhanced pre-trained model
收藏 引用
Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language processing, ACL-IJCNLP 2021
作者: Xu, Zenan Guo, Daya Tang, Duyu Su, Qinliang Shou, Linjun Gong, Ming Zhong, Wanjun Quan, Xiaojun Jiang, Daxin Duan, Nan School of Computer Science and Engineering Sun Yat-Sen University Guangzhou China Microsoft Research Asia Beijing China Microsoft Search Technology Center Asia Beijing China Guangdong Key Laboratory of Big Data Analysis and Processing Guangzhou China Key Lab. of Machine Intelligence and Advanced Computing Ministry of Education China
We study the problem of leveraging the syntactic structure of text to enhance pre-trained models such as BERT and RoBERTa. Existing methods utilize syntax of text either in the pre-training stage or in the fine-tuning... 详细信息
来源: 评论
Point-Level and Set-Level Deep Representation Learning for Cross-Modal Person Re-identification
Point-Level and Set-Level Deep Representation Learning for C...
收藏 引用
International Conference on Computer and Communications (ICCC)
作者: Jihui Hu Pengfei Ye Danyang Li Lingyun Dong Xiaopan Chen Xiaoke Zhu Henan Key Laboratory of Big Data Analysis and Processing Henan University Kaifeng China School of Computer and Information Engineering Henan University Kaifeng China Henan Engineering Research Center of Intelligent Technology and Application Henan University
In practice, significant modality differences usually exist between visible and infrared images, which makes visible-infrared Person Re-Identification (VI-ReID) a challenging research task. Due to the existing influen... 详细信息
来源: 评论
Dual attention mechanism object tracking algorithm based on Fully-convolutional Siamese network
Dual attention mechanism object tracking algorithm based on ...
收藏 引用
2021 International Conference on Networking and Network Applications, NaNA 2021
作者: Ma, Sugang Zhang, Zixian Zhang, Lei Chen, Yanping Yang, Xiaobao Pu, Lei Hou, Zhiqiang Xi'an University of Posts and Telecommunications School of Computer Science and Technology Shaanxi Xi'an710121 China Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing Xi'an Key Laboratory of Big Data and Intelligent Computing Xi'an University of Posts and Telecommunications Shaanxi Xi'an710121 China School of Information and Navigation Air Force Engineering University Shaanxi Xi'an710077 China School of Information Engineering Chang'an University Shaanxi Xi'an710064 China
In an effort to the problem of insufficient tracking performance of the Fully-convolutional Siamese network (SiamFC) in complex scenarios, a dual attention mechanism object tracking algorithm based on the Fully-convol... 详细信息
来源: 评论
Anomaly Detection by Leveraging Incomplete Anomalous Knowledge with Anomaly-Aware Bidirectional GANs
arXiv
收藏 引用
arXiv 2022年
作者: Tian, Bowen Su, Qinliang Yin, Jian School of Computer Science and Engineering Sun Yat-sen University Guangzhou China Guangdong Key Laboratory of Big Data Analysis and Processing Guangzhou China School of Artificial Intelligence Sun Yat-sen University Guangdong China
The goal of anomaly detection is to identify anomalous samples from normal ones. In this paper, a small number of anomalies are assumed to be available at the training stage, but they are assumed to be collected only ... 详细信息
来源: 评论
Lightweight Transformer Network and Self-supervised Task for Kinship Verification
Lightweight Transformer Network and Self-supervised Task for...
收藏 引用
International Conference on Computer and Communications (ICCC)
作者: Xiaoke Zhu Yunwei Li Danyang Li Lingyun Dong Xiaopan Chen School of Computer and Information Engineering Henan University Kaifeng China Henan Engineering Research Center of Intelligent Technology and Application Henan University Henan Key Laboratory of Big Data Analysis and Processing Henan University Kaifeng China
Kinship verification is one of the interesting and critical problems in computer vision research, with significant progress in the past decades. Meanwhile, Vision Transformer (VIT) has recently achieved impressive suc... 详细信息
来源: 评论
A High Parallel Accelerator Design Based on the Sparsity of Convolutional Neural Network
SSRN
收藏 引用
SSRN 2022年
作者: Pan, Xiao Ying Mu, Yuanzhen Jia, Ningxin Gao, Xuan Rong Feng, Tong School of Computer Science and Technology Xi’an University of Posts and Telecommunications Shannxi Xi’an710121 China Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing Xi’an University of Posts and Telecommunications Shannxi Xi’an710121 China
Designing a domain-specific accelerator is an effective way to improve the performance of inference network on resource-constrained embedded devices. However, there are a large number of invalid memory accesses and ca... 详细信息
来源: 评论