咨询与建议

限定检索结果

文献类型

  • 486 篇 会议
  • 335 篇 期刊文献

馆藏范围

  • 821 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 566 篇 工学
    • 415 篇 计算机科学与技术...
    • 366 篇 软件工程
    • 142 篇 信息与通信工程
    • 87 篇 生物工程
    • 58 篇 光学工程
    • 55 篇 生物医学工程(可授...
    • 50 篇 机械工程
    • 49 篇 控制科学与工程
    • 42 篇 化学工程与技术
    • 41 篇 电气工程
    • 39 篇 电子科学与技术(可...
    • 22 篇 仪器科学与技术
    • 21 篇 土木工程
    • 19 篇 建筑学
    • 19 篇 交通运输工程
    • 16 篇 材料科学与工程(可...
    • 16 篇 网络空间安全
  • 302 篇 理学
    • 166 篇 数学
    • 90 篇 生物学
    • 78 篇 物理学
    • 55 篇 统计学(可授理学、...
    • 29 篇 化学
    • 21 篇 系统科学
  • 135 篇 管理学
    • 70 篇 管理科学与工程(可...
    • 64 篇 图书情报与档案管...
    • 28 篇 工商管理
  • 40 篇 医学
    • 34 篇 临床医学
    • 30 篇 基础医学(可授医学...
    • 22 篇 药学(可授医学、理...
  • 28 篇 法学
    • 24 篇 社会学
  • 15 篇 经济学
  • 14 篇 农学
  • 12 篇 教育学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 29 篇 semantics
  • 26 篇 feature extracti...
  • 24 篇 deep learning
  • 20 篇 training
  • 15 篇 object detection
  • 15 篇 convolution
  • 14 篇 neural networks
  • 14 篇 machine learning
  • 14 篇 accuracy
  • 13 篇 predictive model...
  • 11 篇 anomaly detectio...
  • 11 篇 knowledge graph
  • 11 篇 computational mo...
  • 11 篇 synthetic apertu...
  • 11 篇 forecasting
  • 10 篇 image enhancemen...
  • 10 篇 signal processin...
  • 10 篇 data models
  • 9 篇 visualization
  • 9 篇 remote sensing

机构

  • 148 篇 guangdong key la...
  • 93 篇 henan key labora...
  • 70 篇 school of comput...
  • 53 篇 school of comput...
  • 47 篇 school of comput...
  • 39 篇 school of data a...
  • 33 篇 shaanxi key labo...
  • 33 篇 school of artifi...
  • 32 篇 sun yat-sen univ...
  • 28 篇 shaanxi key labo...
  • 24 篇 school of comput...
  • 20 篇 college of compu...
  • 19 篇 microsoft resear...
  • 16 篇 peng cheng labor...
  • 16 篇 key laboratory o...
  • 16 篇 xi'an key labora...
  • 14 篇 shaanxi key labo...
  • 13 篇 henan university...
  • 13 篇 henan engineerin...
  • 11 篇 henan key labora...

作者

  • 49 篇 yin jian
  • 25 篇 wang zhongmin
  • 23 篇 wu di
  • 21 篇 su qinliang
  • 19 篇 yu jianxing
  • 18 篇 liu yang
  • 18 篇 chen yanping
  • 16 篇 wang lihui
  • 15 篇 zhang lei
  • 15 篇 zuo xianyu
  • 15 篇 zhongmin wang
  • 15 篇 yanping chen
  • 14 篇 duan nan
  • 14 篇 jian yin
  • 13 篇 tang duyu
  • 13 篇 lei zhang
  • 13 篇 li ning
  • 13 篇 zhou yipeng
  • 12 篇 xiaoke zhu
  • 12 篇 xia hong

语言

  • 739 篇 英文
  • 79 篇 其他
  • 5 篇 中文
检索条件"机构=Key Laboratory of Data Analysis and Image Processing"
821 条 记 录,以下是641-650 订阅
Inferential text generation with multiple knowledge sources and meta-learning
arXiv
收藏 引用
arXiv 2020年
作者: Guo, Daya Asai, Akari Tang, Duyu Duan, Nan Gong, Ming Shou, Linjun Jiang, Daxin Yin, Jian Zhou, Ming School of Data and Computer Science Sun Yat-sen University Guangdong Key Laboratory of Big Data Analysis and Processing Guangzhou China University of Washington Microsoft Research Asia Beijing China Microsoft Search Technology Center Asia Beijing China
We study the problem of generating inferential texts of events for a variety of commonsense like if-else relations. Existing approaches typically use limited evidence from training examples and learn for each relation... 详细信息
来源: 评论
Emotion-Related Rich-Club Organization in Dynamic Brain Network
Emotion-Related Rich-Club Organization in Dynamic Brain Netw...
收藏 引用
International Conference on Networking and Network Applications (NaNA)
作者: Zhongmin Wang Rui Zhou Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing Xi'an University of Posts and Telecommunications Xi'an Shaanxi China School of Computer Science and Technology Xi'an University of Posts and Telecommunications Xi'an Shaanxi China
The information interaction when the brain processes emotional activities is intricate. Therefore, it is very necessary for us to explore the mechanisms of the functional coordination of various brain regions. Recent ... 详细信息
来源: 评论
Distance variety preserving hashing for large-scale retrieval
Distance variety preserving hashing for large-scale retrieva...
收藏 引用
作者: Zhai, Sheping School of Computer Science and Technology Xi'an University of Posts and Telecommunications Xi'an710121 China Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing Xi'an University of Posts and Telecommunications Xi'an710121 China
Hashing techniques have been seen huge adoption in large-scale retrieval owing to the computational and storage efficiencies of binary codes. However, the binary codes might not preserve the semantic similarity powerf... 详细信息
来源: 评论
Improved drug-target interaction prediction with Intermolecular Graph Transformer
arXiv
收藏 引用
arXiv 2021年
作者: Liu, Siyuan Wang, Yusong Wang, Tong Deng, Yifan He, Liang Shao, Bin Yin, Jian Zheng, Nanning Liu, Tie-Yan School of Computer Science and Engineering Sun Yat-Sen University Guangzhou510006 China Guangdong Key Laboratory of Big Data Analysis and Processing Guangzhou510006 China Microsoft Research Asia Beijing100080 China Institute of Artificial Intelligence and Robotics Xi'an Jiaotong University Xi'an710049 China School of Computer Science Fudan University Shanghai200433 China
The identification of active binding drugs for target proteins (termed as drug-target interaction prediction) is the key challenge in virtual screening, which plays an essential role in drug discovery. Although recent... 详细信息
来源: 评论
On the Detection of Shilling Attacks in Federated Collaborative Filtering
On the Detection of Shilling Attacks in Federated Collaborat...
收藏 引用
Reliable Distributed Systems
作者: Yangfan Jiang Yipeng Zhou Di Wu Chao Li Yan Wang School of Data and Computer Science Sun Yat-sen University Guangzhou China Guangdong Key Laboratory of Big Data Analysis and Processing Guangzhou China Key Laboratory of Machine Intelligence and Advanced Computing (Sun Yat-sen University) Ministry of Education China Macquarie University Sydney NSW Australia Tencent Inc Shenzhen China
Federated collaborative filtering (Fed-CF) is a variant of federated learning (FL) models, which can protect user privacy in recommender systems. In Fed-CF, the recommendation model is collectively trained across mult... 详细信息
来源: 评论
On the practicality of differential privacy in federated learning by tuning iteration times
arXiv
收藏 引用
arXiv 2021年
作者: Fu, Yao Zhou, Yipeng Wu, Di Yu, Shui Wen, Yonggang Li, Chao Department of Computer Science Sun Yatsen University Guangzhou510006 China Guangdong Key Laboratory of Big Data Analysis and Processing Guangzhou510006 China Department of Computing FSE Macquarie University 2122 Australia School of Computer Science University of Technology Sydney Australia School of Computer Science and Engineering Nanyang Technological University Singapore Co. Ltd China
In spite that Federated Learning (FL) is well known for its privacy protection when training machine learning models among distributed clients collaboratively, recent studies have pointed out that the naive FL is susc... 详细信息
来源: 评论
Optimizing Convolutional Neural Networks Architecture Using a Modified Particle Swarm Optimization for image Classification
SSRN
收藏 引用
SSRN 2022年
作者: Elhani, Djenaihi Megherbi, Ahmed Chaouki Zitouni, Athmane Dornaika, Fadi Sbaa, Salim Taleb-Ahmed, Abdelmalik Laboratory of LESIA University of Biskra Algeria Department of Electrical Engineering University of Biskra BP 145 RP Biskra07000 Algeria Laboratory of LI3C University of Biskra Algeria Department of Electrical Engineering University of Biskra BP 145 RP Biskra07000 Algeria Henan University Henan Key Laboratory of Big Data Analysis and Processing Kaifeng China University of the Basque Country UPV/EHU Manuel Lardizabal 1 San Sebastian20018 Spain IKERBASQUE Basque Foundation for Science Bilboa Spain Univ. Polytechnique Hauts-de-France Univ. Lille CNRS Centrale Lille UMR CNRS 8520 ValenciennesF-59313 France
Although the Convolutional Neural Network (CNN) has been shown to be effective in solving image classification tasks, its architecture is often difficult to design (i.e., much tuning is required for optimization) due ... 详细信息
来源: 评论
Optimizing video caching at the edge: A hybrid multi-point process approach
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Xianzhi Zhou, Yipeng Wu, Di Hu, Miao Xi Zheng, James Chen, Min Guo, Song Department of Computer Science Sun Yat-sen University Guangzhou510006 China Guangdong Key Laboratory of Big Data Analysis and Processing Guangzhou510006 China Peng Cheng Laboratory Shenzhen518000 China Department of Computing FSE Macquarie University 2122 Australia School of Computer Science and Technology Huazhong University of Science and Technology Wuhan430074 China Department of Computing The Polytechnic University of Hong Kong Hong Kong
It is always a challenging problem to deliver a huge volume of videos over the Internet. To meet the high bandwidth and stringent playback demand, one feasible solution is to cache video contents on edge servers based... 详细信息
来源: 评论
data-Efficient Federated Semi-Supervised Learning Framework Via Pseudo Supervision Refinement Strategy for Lung Tumor Segmentation
SSRN
收藏 引用
SSRN 2024年
作者: Shi, Zhenwei Li, Weixing Pan, Xipeng Zhang, Zhen Wu, Guangyao Ye, Guanchao Wee, Leonard Dekker, Andre Han, Chu Shi, Lei Liu, Zaiyi Liu, Zhenbing School of Computer and Information Security Guilin University of Electronic Technology Guilin541004 China Department of Radiology Guangdong Provincial People’s Hospital Guangdong Academy of Medical Sciences Southern Medical University Guangzhou510080 China Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application Guangzhou510080 China Chinese Academy of Sciences Zhejiang Hangzhou310022 China Chinese Academy of Sciences Zhejiang Hangzhou310022 China Department of Radiology Huazhong University of Science and Technology Tongji Medical College Union Hospital Hubei Wuhan430021 China Clinical Data Science Faculty of Health Medicine Life Sciences Maastricht University Maastricht6229 ET Netherlands GROW School of Oncology and Reproduction Maastricht University Medical Centre+ Maastricht6229 ET Netherlands Guangdong Provincial People's Hospital China
Background and Objective: Accurate lung tumor segmentation is crucial for early clinical diagnosis and subsequent treatment planning for patients. Conducting centralized training to enhance model performance is imprac... 详细信息
来源: 评论
data-Efficient Federated Semi-Supervised Learning Framework Via Pseudo Supervision Refinement Strategy for Lung Tumor Segmentation
SSRN
收藏 引用
SSRN 2024年
作者: Shi, Zhenwei Li, Weixing Pan, Xipeng Zhang, Zhen Wu, Guangyao Ye, Guanchao Wee, Leonard Andre, Dekker Han, Chu Shi, Lei Liu, Zaiyi Liu, Zhenbing School of Computer and Information Security Guilin University of Electronic Technology Guilin541004 China Department of Radiology Guangdong Provincial People’s Hospital Guangdong Academy of Medical Sciences Southern Medical University Guangzhou510080 China Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application Guangzhou510080 China Chinese Academy of Sciences Zhejiang Hangzhou310022 China Chinese Academy of Sciences Zhejiang Hangzhou310022 China Department of Radiology Huazhong University of Science and Technology Tongji Medical College Union Hospital Hubei Wuhan430021 China Clinical Data Science Faculty of Health Medicine Life Sciences Maastricht University Maastricht6229 ET Netherlands GROW School of Oncology and Reproduction Maastricht University Medical Centre+ Maastricht6229 ET Netherlands Guangdong Provincial People's Hospital China
Accurate lung tumor segmentation is crucial for early clinical diagnosis and subsequent treatment planning for patients. Centralized model training faces privacy constraints, although federated learning offers a promi... 详细信息
来源: 评论