咨询与建议

限定检索结果

文献类型

  • 214 篇 期刊文献
  • 67 篇 会议

馆藏范围

  • 281 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 190 篇 理学
    • 89 篇 物理学
    • 71 篇 地球物理学
    • 41 篇 数学
    • 31 篇 天文学
    • 22 篇 化学
    • 16 篇 统计学(可授理学、...
    • 9 篇 系统科学
    • 4 篇 地质学
    • 4 篇 生物学
  • 154 篇 工学
    • 47 篇 计算机科学与技术...
    • 42 篇 软件工程
    • 34 篇 仪器科学与技术
    • 21 篇 材料科学与工程(可...
    • 21 篇 化学工程与技术
    • 20 篇 电子科学与技术(可...
    • 19 篇 电气工程
    • 18 篇 冶金工程
    • 18 篇 控制科学与工程
    • 14 篇 机械工程
    • 14 篇 光学工程
    • 13 篇 信息与通信工程
    • 12 篇 建筑学
    • 12 篇 土木工程
    • 8 篇 航空宇航科学与技...
    • 7 篇 动力工程及工程热...
    • 6 篇 力学(可授工学、理...
    • 6 篇 核科学与技术
  • 19 篇 管理学
    • 15 篇 管理科学与工程(可...
    • 8 篇 工商管理
    • 5 篇 图书情报与档案管...
  • 7 篇 医学
  • 2 篇 经济学
  • 1 篇 法学
  • 1 篇 农学

主题

  • 19 篇 cosmology
  • 15 篇 dark energy
  • 9 篇 gravity waves
  • 6 篇 cosmological par...
  • 6 篇 neutrino mass
  • 6 篇 switched systems
  • 6 篇 dark matter
  • 6 篇 gravitational wa...
  • 5 篇 gravitational wa...
  • 5 篇 optimization
  • 4 篇 interacting dark...
  • 4 篇 intelligent robo...
  • 4 篇 data analytics
  • 4 篇 cosmological
  • 4 篇 benchmark testin...
  • 4 篇 the hubble const...
  • 3 篇 solid state recy...
  • 3 篇 galaxies
  • 3 篇 supernovae
  • 3 篇 charge storage m...

机构

  • 106 篇 national frontie...
  • 59 篇 department of ph...
  • 43 篇 key laboratory o...
  • 41 篇 key laboratory o...
  • 35 篇 center for high ...
  • 33 篇 college of infor...
  • 31 篇 moe key laborato...
  • 31 篇 key laboratory o...
  • 27 篇 key laboratory o...
  • 23 篇 liaoning key lab...
  • 17 篇 ministry of educ...
  • 15 篇 state key labora...
  • 14 篇 national astrono...
  • 14 篇 college of scien...
  • 13 篇 college of physi...
  • 12 篇 ministry of educ...
  • 11 篇 center for gravi...
  • 10 篇 foshan graduate ...
  • 8 篇 faculty of robot...
  • 8 篇 frontiers scienc...

作者

  • 80 篇 zhang xin
  • 49 篇 zhang jing-fei
  • 36 篇 xin zhang
  • 23 篇 jing-fei zhang
  • 16 篇 jun zhao
  • 13 篇 qi jing-zhao
  • 11 篇 wang xianpeng
  • 11 篇 wu peng-ju
  • 10 篇 jin shang-jie
  • 10 篇 li yichao
  • 9 篇 feng lu
  • 9 篇 li hai-li
  • 9 篇 tang lixin
  • 8 篇 yang yang
  • 8 篇 wang ling-feng
  • 7 篇 du guo-hong
  • 7 篇 zhao ze-wei
  • 7 篇 chen dongyue
  • 7 篇 li tian-nuo
  • 6 篇 meng fanli

语言

  • 240 篇 英文
  • 36 篇 其他
  • 3 篇 中文
  • 1 篇 德文
检索条件"机构=Key Laboratory of Data Analytic and Optimization for Smart Industry"
281 条 记 录,以下是161-170 订阅
排序:
Stability for Nash Equilibrium Problems
arXiv
收藏 引用
arXiv 2024年
作者: Diao, Ruoyu Dai, Yu-Hong Zhang, Liwei AMSS Chinese Academy of Sciences Beijing100190 China LSEC AMSS Chinese Academy of Sciences Beijing100190 China School of Mathematical Sciences University of Chinese Academy of Sciences Beijing100049 China National Frontiers Science Center for Industrial Intelligence and Systems Optimization Northeastern University Shenyang110819 China Key Laboratory of Data Analytics and Optimization for Smart Industry Northeastern University Ministry of Education Shenyang110819 China
This paper is devoted to studying the stability properties of the Karush-Kuhn-Tucker (KKT) solution mapping SKKT for Nash equilibrium problems (NEPs) with canonical perturbations. Firstly, we obtain an exact character... 详细信息
来源: 评论
A comparative study on different background estimation methods for extensive air shower arrays
A comparative study on different background estimation metho...
收藏 引用
作者: Wang, Yan-Jin Zha, Min Hu, Shi-Cong Gao, Chuan-Dong Zhang, Jian-Li Zhang, Xin College of Sciences Northeastern University Shenyang110819 China Key Laboratory of Particle Astrophysics Institute of High Energy Physics Chinese Academy of Sciences Beijing100049 China Institute of Frontier and Interdisciplinary Science Shandong University Qingdao266237 China University of Chinese Academy of Sciences Beijing10049 China National Astronomical Observatories Chinese Academy of Sciences Beijing100101 China Key Laboratory of Data Analytics and Optimization for Smart Industry Northeastern University Ministry of Education Shenyang110819 China National AFrontiers Science Center for Industrial Intelligence and Systems Optimization Northeastern University Shenyang110819 China
Background estimation is essential when studying TeV γ-ray astronomy for extensive air shower arrays. In this work, by applying four different methods including equi-zenith angle method, surrounding window method, di... 详细信息
来源: 评论
Cosmological Parameter Estimation Using Current and Future Observations of Strong Gravitational Lensing
arXiv
收藏 引用
arXiv 2022年
作者: Qi, Jing-Zhao Hu, Wei-Hong Cui, Yu Zhang, Jing-Fei Zhang, Xin Department of Physics College of Sciences Northeastern University Shenyang110819 China Frontiers Science Center for Industrial Intelligence and Systems Optimization Northeastern University Shenyang110819 China Key Laboratory of Data Analytics and Optimization for Smart Industry [Northeastern University Ministry of Education China
Remarkable development of cosmology is benefited from the increasingly improved measurements of cosmic distances including absolute distances and relative distances. In recent years, however, the emerged cosmological ... 详细信息
来源: 评论
How to Perform Energy-Balanced Underwater data Collection in AUV-Aided UASNs: A Social Welfare-Based Node Clustering Approach
收藏 引用
IEEE Transactions on Computational Social Systems 2024年
作者: Lin, Chuan Han, Guangjie Lu, Chang Hussain Shah, Syed Bilal Zhang, Yu Wang, Feng Northeastern University Software College Shenyang110819 China Hohai University Key Laboratory of Data Analytics and Optimization for Smart Industry Ministry of Education Nanjing210013 China Hohai University Key Laboratory of Maritime Intelligent Network Information Technology Ministry of Education Nanjing210013 China Dalian University of Technology School of Software Dalian116024 China Dar Al-Hekma University School of Engineering Computing and Informatics Jeddah21589 Saudi Arabia Suzhou Vocational University School of Engineering Suzhou215004 China
The rapid evolution of the Internet of Underwater Things (IoUT) has led to the widespread adoption of autonomous underwater vehicle (AUV)-assisted underwater acoustic sensor networks (UASNs) for various applications s... 详细信息
来源: 评论
Dark energy and matter interacting scenario to relieve H_(0) and S_(8) tensions
收藏 引用
Chinese Physics C 2024年 第5期48卷 1-7页
作者: 高立场 薛社生 张鑫 Key Laboratory of Cosmology and Astrophysics(Liaoning Province)&Department of Physics College of SciencesNortheastern UniversityShenyang 110819China Kapteyn Astronomical Institute University of GroningenP.O.Box 8009700 AV Groningenthe Netherlands ICRANet Piazzale della Repubblica10-65122PescaraItaly ICTP-AP University of Chinese Academy of SciencesBeijing 100049China Physics Department Sapienza University of RomeP.le A.Moro 500185RomeItaly INFN Sezione di PerugiaVia A.PascoliI-06123PerugiaItaly Key Laboratory of Data Analytics and Optimization for Smart Industry(Ministry of Education) Northeastern UniversityShenyang 110819China National Frontiers Science Center for Industrial Intelligence and Systems Optimization Northeastern UniversityShenyang 110819China
We consider a new cosmological model(calledΛCDM),in which the vacuum energy interacts with matter and radiation,and test this model using the current cosmological *** the CMB+BAO+SN(CBS)dataset to constrain the model... 详细信息
来源: 评论
Decomposition is All You Need: Single-Objective to Multi-Objective optimization Towards Responsible Artificial General Intelligence
SSRN
收藏 引用
SSRN 2024年
作者: Wendi, Xu Yuemao, Zhao Ming, Zhang College of Energy and Mining Engineering Shandong University of Science and Technology Qingdao266590 China National Frontier Sciences Center for Industrial Intelligence and Systems Optimization Ministry of Education China College of Information Science and Engineering Northeastern University United States Key Laboratory of Data Analytics and Optimization for Smart Industry Ministry of Education China Xinjiang Astronomical Observatory Chinese Academy of Sciences China Key Laboratory for Radio Astronomy Chinese Academy of Sciences Nanjing China University of Chinese Academy of Sciences China Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines Shenyang110819 China
Responsible artificial general intelligence (AGI) is deeply connected with both explainable artificial intelligence and interpretable artificial intelligence. In frontier science of evolutionary transfer optimization ... 详细信息
来源: 评论
Eliminating polarization leakage effect for neutral hydrogen intensity mapping with deep learning
arXiv
收藏 引用
arXiv 2022年
作者: Gao, Li-Yang Li, Yichao Ni, Shulei Zhang, Xin College of Sciences Northeastern University Shenyang110819 China Key Laboratory of Data Analytics and Optimization for Smart Industry Ministry of Education Northeastern University Shenyang110819 China National Frontiers Science Center for Industrial Intelligence and Systems Optimization Northeastern University Shenyang110819 China
The neutral hydrogen (HI) intensity mapping (IM) survey is regarded as a promising approach for cosmic large-scale structure studies. A major issue for the HI IM survey is to remove the bright foreground contamination... 详细信息
来源: 评论
Detecting stochastic gravitational wave background from cosmic strings with next-generation detector networks: Component separation based on a multi-source astrophysical foreground noise model
arXiv
收藏 引用
arXiv 2025年
作者: Wang, Geng-Chen Jin, Hong-Bo Zhang, Xin Liaoning Key Laboratory of Cosmology and Astrophysics College of Sciences Northeastern University Shenyang110819 China Institute for Frontiers in Astronomy and Astrophysics Beijing Normal University Beijing China National Astronomical Observatories Chinese Academy of Sciences Beijing100101 China The International Centre for Theoretical Physics Asia-Pacific University of Chinese Academy of Sciences Beijing100190 China MOE Key Laboratory of Data Analytics and Optimization for Smart Industry Northeastern University Shenyang110819 China National Frontiers Science Center for Industrial Intelligence and Systems Optimization Northeastern University Shenyang110819 China
Detecting stochastic gravitational wave background (SGWB) from cosmic strings is crucial for unveiling the evolutionary laws of the early universe and validating non-standard cosmological models. This study presents t... 详细信息
来源: 评论
An Adaptive Cost-Sensitive Learning and Recursive Denoising Framework for Imbalanced SVM Classification
arXiv
收藏 引用
arXiv 2024年
作者: Jiang, Lu Wang, Qi Chang, Yuhang Song, Jianing Fu, Haoyue Yang, Xiaochun College of Sciences Northeastern University Shenyang110819 China Key Laboratory of Data Analytics and Optimization for Smart Industry Northeastern University Shenyang110819 China School of Mechanical Engineering and Automation Northeastern University Shenyang110819 China Software College Northeastern University Shenyang110819 China School of Computer Science and Engineering Northeastern University Shenyang110819 China
Category imbalance is one of the most popular and important issues in the domain of classification. Emotion classification model trained on imbalanced datasets easily leads to unreliable prediction. The traditional ma... 详细信息
来源: 评论
Impacts of gravitational-wave standard siren observations from Einstein Telescope and Cosmic Explorer on weighing neutrinos in interacting dark energy models
arXiv
收藏 引用
arXiv 2022年
作者: Jin, Shang-Jie Zhu, Rui-Qi Wang, Ling-Feng Li, Hai-Li Zhang, Jing-Fei Zhang, Xin Department of Physics College of Sciences Northeastern University Shenyang110819 China Frontiers Science Center for Industrial Intelligence and Systems Optimization Northeastern University Shenyang110819 China Key Laboratory of Data Analytics and Optimization for Smart Industry Northeastern University Ministry of Education Shenyang110819 China
Multi-messenger gravitational-wave (GW) observation for binary neutron star merger events could provide a rather useful tool to explore the evolution of the universe. In particular, for the third-generation GW detecto... 详细信息
来源: 评论