Since image editing methods in real world scenarios cannot be exhausted, generalization is a core challenge for image manipulation detection, which could be severely weakened by semantically related features. In this ...
Since image editing methods in real world scenarios cannot be exhausted, generalization is a core challenge for image manipulation detection, which could be severely weakened by semantically related features. In this paper we propose SAFL-Net, which constrains a feature extractor to learn semantic-agnostic features by designing specific modules with corresponding auxiliary tasks. Applying constraints directly to the features extracted by the encoder helps it learn semantic-agnostic manipulation trace features, which prevents the biases related to semantic information within the limited training data and improves generalization capabilities. The consistency of auxiliary boundary prediction task and original region prediction task is guaranteed by a feature transformation structure. Experiments on various public datasets and comparisons in multiple dimensions demonstrate that SAFL-Net is effective for image manipulation detection.
Graph-based Cognitive Diagnosis (CD) has attracted much research interest due to its strong ability on inferring students' proficiency levels on knowledge concepts. While graph-based CD models have demonstrated re...
详细信息
ISBN:
(纸本)9798400712456
Graph-based Cognitive Diagnosis (CD) has attracted much research interest due to its strong ability on inferring students' proficiency levels on knowledge concepts. While graph-based CD models have demonstrated remarkable performance, we contend that they still cannot achieve optimal performance due to the neglect of edge heterogeneity and uncertainty. Edges involve both correct and incorrect response logs, indicating heterogeneity. Meanwhile, a response log can have uncertain semantic meanings, e.g., a correct log can indicate true mastery or fortunate guessing, and a wrong log can indicate a lack of understanding or a careless mistake. In this paper, we propose an Informative Semantic-aware Graph-based Cognitive Diagnosis model (ISG-CD), which focuses on how to utilize the heterogeneous graph in CD and minimize effects of uncertain edges. Specifically, to explore heterogeneity, we propose a semantic-aware graph neural networks based CD model. To minimize effects of edge uncertainty, we propose an Informative Edge Differentiation layer from an information bottleneck perspective, which suggests keeping a minimal yet sufficient reliable graph for CD in an unsupervised way. We formulate this process as maximizing mutual information between the reliable graph and response logs, while minimizing mutual information between the reliable graph and the original graph. After that, we prove that mutual information maximization can be theoretically converted to the classic binary cross entropy loss function, while minimizing mutual information can be realized by the Hilbert-Schmidt Independence ***, we adopt an alternating training strategy for optimizing learnable parameters of both the semantic-aware graph neural networks based CD model and the edge differentiation layer. Extensive experiments on three real-world datasets have demonstrated the effectiveness of ISG-CD.
Social platforms, while facilitating access to information, have also become saturated with a plethora of fake news, resulting in negative consequences. Automatic multimodal fake news detection is a worthwhile pursuit...
Bilingual lexicon induction (BLI) can transfer knowledgefrom well- to under- resourced language, and has been widelyapplied to various NLP tasks. Recent work on BLI is projection-based that learns a mapping to connect...
详细信息
In order to solve the problem of insufficient generation quality caused by traditional patent text abstract generation models only originating from patent specifications, the problem of new terminology OOV caused by r...
详细信息
In multi-label learning, each instance is associated with a set of labels simultaneously. Most existing studies assume that the set of labels for each instance is complete. However, it is generally difficult to obtain...
In multi-label learning, each instance is associated with a set of labels simultaneously. Most existing studies assume that the set of labels for each instance is complete. However, it is generally difficult to obtain all the relevant labels of each instance, and only a partial or even empty set of relevant labels is available, which is called semi-supervised multi-label learning with missing labels. To tackle this problem, we propose a novel framework that considers label correlations and instance correlations to recover the missing labels and utilizes a large amount of unlabeled data simultaneously to improve the classification performance. Specifically, a new supplementary label matrix is firstly obtained by learning the label correlation. Secondly, considering each class label may be decided by some specific characteristics of its own, a label-specific data representation is hence learned for each class label. Thirdly, instance correlations are utilized not only to recover the missing labels, but also to propagate the supervision information from labeled instances to unlabeled ones. In addition, a united objective function is designed to facilitate the above processing and an accelerated proximal gradient method is adopted to solve the optimization problem. Finally, extensive experimental results conducted on several benchmark datasets demonstrate the effectiveness of the proposed method compared to competing ones.
Diffusion models are powerful generative models, and this capability can also be applied to discrimination. The inner activations of a pre-trained diffusion model can serve as features for discriminative tasks, namely...
One of the recent best attempts at Text-to-SQL is the pre-trained language model. Due to the structural property of the SQL queries, the seq2seq model takes the responsibility of parsing both the schema items (i.e., t...
详细信息
Predicting student performance is a fundamental task in Intelligent Tutoring Systems (ITSs), by which we can learn about students’ knowledge level and provide personalized teaching strategies for them. Researche...
详细信息
Diffusion models are initially designed for image generation. Recent research shows that the internal signals within their backbones, named activations, can also serve as dense features for various discriminative task...
暂无评论