咨询与建议

限定检索结果

文献类型

  • 617 篇 会议
  • 548 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 1,168 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 736 篇 工学
    • 582 篇 计算机科学与技术...
    • 475 篇 软件工程
    • 150 篇 信息与通信工程
    • 75 篇 控制科学与工程
    • 74 篇 生物工程
    • 55 篇 电气工程
    • 42 篇 化学工程与技术
    • 41 篇 电子科学与技术(可...
    • 39 篇 机械工程
    • 35 篇 生物医学工程(可授...
    • 25 篇 仪器科学与技术
    • 24 篇 动力工程及工程热...
    • 23 篇 材料科学与工程(可...
    • 21 篇 光学工程
    • 19 篇 建筑学
    • 17 篇 航空宇航科学与技...
    • 15 篇 交通运输工程
  • 330 篇 理学
    • 183 篇 数学
    • 80 篇 生物学
    • 70 篇 物理学
    • 55 篇 统计学(可授理学、...
    • 39 篇 化学
    • 22 篇 系统科学
  • 290 篇 管理学
    • 173 篇 图书情报与档案管...
    • 144 篇 管理科学与工程(可...
    • 46 篇 工商管理
  • 39 篇 法学
    • 34 篇 社会学
  • 36 篇 医学
    • 31 篇 临床医学
    • 22 篇 基础医学(可授医学...
  • 18 篇 经济学
    • 18 篇 应用经济学
  • 10 篇 教育学
  • 7 篇 文学
  • 6 篇 农学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 58 篇 semantics
  • 35 篇 knowledge engine...
  • 35 篇 data mining
  • 33 篇 training
  • 25 篇 feature extracti...
  • 22 篇 data models
  • 20 篇 data engineering
  • 20 篇 laboratories
  • 20 篇 computational mo...
  • 19 篇 conferences
  • 19 篇 xml
  • 19 篇 big data
  • 18 篇 machine learning
  • 18 篇 information retr...
  • 17 篇 visualization
  • 16 篇 deep learning
  • 16 篇 task analysis
  • 16 篇 databases
  • 15 篇 knowledge manage...
  • 15 篇 knowledge graph

机构

  • 168 篇 school of inform...
  • 104 篇 school of comput...
  • 51 篇 key laboratory o...
  • 49 篇 key laboratory o...
  • 48 篇 college of compu...
  • 32 篇 jiangxi key labo...
  • 32 篇 school of inform...
  • 31 篇 key laboratory o...
  • 29 篇 key laboratory o...
  • 28 篇 key laboratory o...
  • 25 篇 key laboratory o...
  • 23 篇 key laboratory o...
  • 19 篇 school of econom...
  • 19 篇 school of inform...
  • 18 篇 key laboratory o...
  • 18 篇 key laboratory o...
  • 18 篇 key laboratory o...
  • 18 篇 key laboratory o...
  • 16 篇 college of compu...
  • 16 篇 school of cyber ...

作者

  • 57 篇 chen hong
  • 43 篇 du xiaoyong
  • 38 篇 li cuiping
  • 32 篇 wu xindong
  • 32 篇 wang meng
  • 30 篇 hong chen
  • 30 篇 xiaoyong du
  • 29 篇 wang shan
  • 29 篇 zhang jing
  • 28 篇 xindong wu
  • 23 篇 sun geng
  • 22 篇 liu jun
  • 20 篇 niyato dusit
  • 18 篇 meng wang
  • 18 篇 huang qingming
  • 18 篇 hong richang
  • 17 篇 shan wang
  • 17 篇 wang yang
  • 17 篇 xu qianqian
  • 17 篇 wan changxuan

语言

  • 1,017 篇 英文
  • 123 篇 其他
  • 28 篇 中文
检索条件"机构=Key Laboratory of Data Engineering and Knowledge Engineering of MOE"
1168 条 记 录,以下是571-580 订阅
排序:
AdAUC: End-to-end Adversarial AUC Optimization Against Long-tail Problems
arXiv
收藏 引用
arXiv 2022年
作者: Hou, Wenzheng Xu, Qianqian Yang, Zhiyong Bao, Shilong He, Yuan Huang, Qingming Key Laboratory of Intelligent Information Processing Institute of Computing Technology CAS Beijing China School of Computer Science and Technology University of Chinese Academy of Sciences Beijing China State Key Laboratory of Information Security Institute of Information Engineering CAS Beijing China School of Cyber Security University of Chinese Academy of Sciences Beijing China Alibaba Group Beijing China Key Laboratory of Big Data Mining and Knowledge Management Chinese Academy of Sciences Beijing China Artificial Intelligence Research Center Peng Cheng Laboratory Shenzhen China
It is well-known that deep learning models are vulnerable to adversarial examples. Existing studies of adversarial training have made great progress against this challenge. As a typical trait, they often assume that t... 详细信息
来源: 评论
Semi-supervised classification on data streams with recurring concept drift and concept evolution
收藏 引用
knowledge-Based Systems 2021年 215卷
作者: Zheng, Xiulin Li, Peipei Hu, Xuegang Yu, Kui Key Laboratory of Knowledge Engineering with Big Data (Hefei University of Technology) Ministry of Education China School of Computer Science and Information Engineering Hefei University of Technology Hefei 230601 China Anhui Province Key Laboratory of Industry Safety and Emergency Technology Hefei 230601 Anhui China
Mining non-stationary stream is a challenging task due to its unique property of infinite length and dynamic characteristics let alone the issues of concept drift, concept evolution and limited labeled data. Although ... 详细信息
来源: 评论
Context-Dependent Propagating-Based Video Recommendation in Multimodal Heterogeneous Information Networks
收藏 引用
IEEE Transactions on Multimedia 2021年 23卷 2019-2032页
作者: Lei Sang Min Xu Shengsheng Qian Matt Martin Peter Li Xindong Wu Key Laboratory of Knowledge Engineering with Big Data Ministry of Education Hefei University of Technology Hefei China Faculty of Engineering and Information Technology University of Technology Sydney Sydney NSW Australia Institute of Automation Chinese Academy of Sciences Beijing China INTERACT Technology Sydney NSW Australia Mininglamp Academy of Sciences Mininglamp Technology Beijing China
With the emergence of online social networks (OSNs), video recommendation has come to play a crucial role in mitigating the semantic gap between users and videos. Conventional approaches to video recommendation primar... 详细信息
来源: 评论
Near-optimal representation learning for linear bandits and linear RL
arXiv
收藏 引用
arXiv 2021年
作者: Hu, Jiachen Chen, Xiaoyu Jin, Chi Li, Lihong Wang, Liwei Key Laboratory of Machine Perception MOE School of EECS Peking University China Department of Electrical and Computer Engineering Princeton University United States Amazon United States Center for Data Science Peking University Beijing Institute of Big Data Research China
This paper studies representation learning for multi-task linear bandits and multi-task episodic RL with linear value function approximation. We first consider the setting where we play M linear bandits with dimension... 详细信息
来源: 评论
Research progress of CDT  8
Research progress of CDT
收藏 引用
8th International Conference on Bioinformatics and Biomedical Science, ICBBS 2019
作者: Yuting, Gao Shutong, Shen Sanhong, Deng School of Information Management Nanjing University China Key Laboratory of Data Engineering and Knowledge Services in Jiangsu China
With the high mortality rate for the cases of malignant tumors, the discovery and early treatment of cancer is critical to improving the 5-year survival rate of cancer. The biggest challenge in control and prevention ... 详细信息
来源: 评论
Robust and Fast Measure of Information via Low-rank Representation
arXiv
收藏 引用
arXiv 2022年
作者: Dong, Yuxin Gong, Tieliang Yu, Shujian Chen, Hong Li, Chen School of Computer Science and Technology Xi’an Jiaotong University Xi’an710049 China Shaanxi Provincial Key Laboratory of Big Data Knowledge Engineering Ministry of Education Xi’an710049 China Machine Learning Group UiT - The Arctic University of Norway Norway College of Science Huazhong Agriculture University Wuhan430070 China Engineering Research Center of Intelligent Technology for Agriculture Ministry of Education Wuhan430070 China
The matrix-based Rényi’s entropy allows us to directly quantify information measures from given data, without explicit estimation of the underlying probability distribution. This intriguing property makes it wid... 详细信息
来源: 评论
Deep Learning on Monocular Object Pose Detection and Tracking: A Comprehensive Overview
arXiv
收藏 引用
arXiv 2021年
作者: Fan, Zhaoxin Zhu, Yazhi He, Yulin Sun, Qi Liu, Hongyan He, Jun Key Laboratory of Data Engineering and Knowledge Engineering of MOE School of Information Renmin University of China Beijing China No. 59 Zhongguancun Street Haidian Dist Beijing100872 China Institute of Information Science Beijing Jiaotong University No.3 Shangyuancun Haidian Dist. Beijing China School of Economics and Management Tsinghua University Haidian Dist Beijing100084 China
Object pose detection and tracking has recently attracted increasing attention due to its wide applications in many areas, such as autonomous driving, robotics, and augmented reality. Among methods for object pose det... 详细信息
来源: 评论
Robust Low-rank Deep Feature Recovery in CNNs: Toward Low Information Loss and Fast Convergence
Robust Low-rank Deep Feature Recovery in CNNs: Toward Low In...
收藏 引用
IEEE International Conference on data Mining (ICDM)
作者: Jiahuan Ren Zhao Zhang Jicong Fan Haijun Zhang Mingliang Xu Meng Wang School of Computer Science and Information Engineering Hefei University of Technology Hefei China Key Laboratory of Knowledge Engineering with Big Data (Ministry of Education) & Intelligent Interconnected Systems Laboratory of Anhui Province Hefei University of Technology Hefei China School of Data Science The Chinese University of Hong Kong (Shenzhen) & Shenzhen Research Institute of Big Data Shenzhen China Harbin Institute of Technology (Shenzhen) Shenzhen China School of Information Engineering Zhengzhou University Zhengzhou China
Convolutional Neural Networks (CNNs)-guided deep models have obtained impressive performance for image representation, however the representation ability may still be restricted and usually needs more epochs to make t... 详细信息
来源: 评论
Rankings never really quantify contributions: A quantitative and qualitative study on universities and their libraries
收藏 引用
Journal of Library Science in China 2020年 117-126页
作者: Shelia X.WEI Ronda J.ZHANG Howell Y.WANG CAO Cong Fred Y.YE International Joint Informatics Laboratory & Jiangsu Key Laboratory of Data Engineering and Knowledge Services School of Information Management Nanjing University Nottingham University Business School University of Nottingham
By comparing quantitative ranking with qualitative contributions, we reveal that academic assessment has to put real contributions ahead of quantitative indicators and that rankings have nothing to do with universitie...
来源: 评论
Xdn: towards efficient inference of residual neural networks on cambricon chips  2nd
Xdn: towards efficient inference of residual neural networks...
收藏 引用
2nd International Symposium on Benchmarking, Measuring, and Optimization, Bench 2019
作者: Li, Guangli Wang, Xueying Ma, Xiu Liu, Lei Feng, Xiaobing State Key Laboratory of Computer Architecture Institute of Computing Technology Chinese Academy of Sciences Beijing China School of Computer Science and Technology University of Chinese Academy of Sciences Beijing China College of Computer Science and Technology Jilin University Changchun China MOE Key Laboratory of Symbolic Computation and Knowledge Engineering Jilin University Changchun China
In this paper, we present XDN, an optimization and inference engine for accelerating residual neural networks on Cambricon chips. We leverage a channel pruning method to compress the weights of ResNet-50. By exploring... 详细信息
来源: 评论