咨询与建议

限定检索结果

文献类型

  • 596 篇 会议
  • 545 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 1,144 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 719 篇 工学
    • 569 篇 计算机科学与技术...
    • 470 篇 软件工程
    • 149 篇 信息与通信工程
    • 75 篇 生物工程
    • 68 篇 控制科学与工程
    • 56 篇 电气工程
    • 43 篇 化学工程与技术
    • 41 篇 电子科学与技术(可...
    • 39 篇 机械工程
    • 34 篇 生物医学工程(可授...
    • 25 篇 仪器科学与技术
    • 25 篇 动力工程及工程热...
    • 21 篇 光学工程
    • 21 篇 材料科学与工程(可...
    • 19 篇 建筑学
    • 17 篇 航空宇航科学与技...
    • 16 篇 交通运输工程
  • 330 篇 理学
    • 181 篇 数学
    • 83 篇 生物学
    • 70 篇 物理学
    • 54 篇 统计学(可授理学、...
    • 40 篇 化学
    • 21 篇 系统科学
  • 293 篇 管理学
    • 175 篇 图书情报与档案管...
    • 145 篇 管理科学与工程(可...
    • 45 篇 工商管理
  • 40 篇 法学
    • 35 篇 社会学
  • 40 篇 医学
    • 33 篇 临床医学
    • 26 篇 基础医学(可授医学...
  • 18 篇 经济学
    • 18 篇 应用经济学
  • 10 篇 教育学
  • 7 篇 文学
  • 6 篇 农学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 58 篇 semantics
  • 35 篇 knowledge engine...
  • 34 篇 data mining
  • 30 篇 training
  • 24 篇 feature extracti...
  • 20 篇 data engineering
  • 20 篇 laboratories
  • 20 篇 computational mo...
  • 20 篇 machine learning
  • 20 篇 data models
  • 19 篇 conferences
  • 19 篇 xml
  • 19 篇 big data
  • 19 篇 information retr...
  • 17 篇 task analysis
  • 17 篇 visualization
  • 16 篇 deep learning
  • 16 篇 databases
  • 15 篇 knowledge manage...
  • 15 篇 knowledge graph

机构

  • 167 篇 school of inform...
  • 104 篇 school of comput...
  • 52 篇 key laboratory o...
  • 49 篇 key laboratory o...
  • 42 篇 college of compu...
  • 32 篇 jiangxi key labo...
  • 32 篇 school of inform...
  • 31 篇 key laboratory o...
  • 29 篇 key laboratory o...
  • 25 篇 key laboratory o...
  • 25 篇 key laboratory o...
  • 23 篇 key laboratory o...
  • 20 篇 key laboratory o...
  • 19 篇 school of inform...
  • 18 篇 key laboratory o...
  • 18 篇 school of econom...
  • 18 篇 key laboratory o...
  • 18 篇 key laboratory o...
  • 16 篇 school of cyber ...
  • 15 篇 school of comput...

作者

  • 54 篇 chen hong
  • 44 篇 du xiaoyong
  • 35 篇 li cuiping
  • 34 篇 wu xindong
  • 32 篇 wang meng
  • 30 篇 hong chen
  • 30 篇 xiaoyong du
  • 29 篇 wang shan
  • 28 篇 zhang jing
  • 26 篇 xindong wu
  • 23 篇 sun geng
  • 20 篇 niyato dusit
  • 19 篇 liu jun
  • 18 篇 meng wang
  • 18 篇 huang qingming
  • 18 篇 hong richang
  • 17 篇 shan wang
  • 17 篇 wang yang
  • 17 篇 xu qianqian
  • 17 篇 wan changxuan

语言

  • 1,060 篇 英文
  • 53 篇 其他
  • 31 篇 中文
检索条件"机构=Key Laboratory of Data Engineering and Knowledge Engineering of MOE"
1144 条 记 录,以下是721-730 订阅
排序:
Learning Structured Twin-Incoherent Twin-Projective Latent Dictionary Pairs for Classification
Learning Structured Twin-Incoherent Twin-Projective Latent D...
收藏 引用
IEEE International Conference on data Mining (ICDM)
作者: Zhao Zhang Yulin Sun Zheng Zhang Yang Wang Guangcan Liu Meng Wang School of Computer Science and Technology Soochow University Suzhou China Key Laboratory of Knowledge Engineering with Big Data (Ministry of Education) Hefei University of Technology School of Computer Science and Information Engineering Hefei University of Technology Hefei China Bio-Computing Research Center Harbin Institute of Technology (Shenzhen) Shenzhen China School of Information and Control Nanjing University of Information Science and Technology Nanjing China
In this paper, we extend the popular dictionary pair learning (DPL) into the scenario of twin-projective latent flexible DPL under a structured twin-incoherence. Technically, a novel framework called Twin-Projective L...
来源: 评论
SEED: Entity oriented information search and exploration  22
SEED: Entity oriented information search and exploration
收藏 引用
22nd International Conference on Intelligent User Interfaces, IUI 2017
作者: Chen, Jun Jacucci, Giulio Chen, Yueguo Ruotsalo, Tuukka School of Information Renmin University of China China Key Laboratory of Data Engineering and Knowledge Engineering MOE China Helsinki Institute for Information Technology HIIT Department of Computer Science University of Helsinki Finland
Entity search and exploration can enrich search user interfaces by presenting relevant information instantly and offering relevant exploration pointers to users. Previous research has demonstrated that large knowledge... 详细信息
来源: 评论
Final results on the decay half-life limit of Mo from the CUPID-Mo experiment
收藏 引用
The European Physical Journal C 2022年 第11期82卷 1-20页
作者: Augier, C. Barabash, A. S. Bellini, F. Benato, G. Beretta, M. Bergé, L. Billard, J. Borovlev, Yu. A. Cardani, L. Casali, N. Cazes, A. Chapellier, M. Chiesa, D. Dafinei, I. Danevich, F. A. De Jesus, M. de Marcillac, P. Dixon, T. Dumoulin, L. Eitel, K. Ferri, F. Fujikawa, B. K. Gascon, J. Gironi, L. Giuliani, A. Grigorieva, V. D. Gros, M. Helis, D. L. Huang, H. Z. Huang, R. Imbert, L. Johnston, J. Juillard, A. Khalife, H. Kleifges, M. Kobychev, V. V. Kolomensky, Yu. G. Konovalov, S. I. Loaiza, P. Ma, L. Makarov, E. P. Mariam, R. Marini, L. Marnieros, S. Navick, X.-F. Nones, C. Norman, E. B. Olivieri, E. Ouellet, J. L. Pagnanini, L. Pattavina, L. Paul, B. Pavan, M. Peng, H. Pessina, G. Pirro, S. Poda, D. V. Polischuk, O. G. Pozzi, S. Previtali, E. Redon, Th. Rojas, A. Rozov, S. Sanglard, V. Scarpaci, J. A. Schmidt, B. Shen, Y. Shlegel, V. N. Singh, V. Tomei, C. Tretyak, V. I. Umatov, V. I. Vagneron, L. Velázquez, M. Welliver, B. Winslow, L. Xue, M. Yakushev, E. Zarytskyy, M. Zolotarova, A. S. Univ Lyon Université Lyon 1 CNRS/IN2P3 IP2I-Lyon Villeurbanne France National Research Centre Kurchatov Institute Institute of Theoretical and Experimental Physics Moscow Russia Dipartimento di Fisica Sapienza Università di Roma Rome Italy INFN Sezione di Roma Rome Italy IRFU CEA Université Paris-Saclay Gif-sur-Yvette France INFN Laboratori Nazionali del Gran Sasso Assergi Italy Department of Physics University of California Berkeley USA Université Paris-Saclay CNRS/IN2P3 IJCLab Orsay France Nikolaev Institute of Inorganic Chemistry Novosibirsk Russia Dipartimento di Fisica Università di Milano-Bicocca Milan Italy INFN Sezione di Milano-Bicocca Milan Italy Institute for Nuclear Research Kyiv Ukraine Institute for Astroparticle Physics Karlsruhe Institute of Technology Karlsruhe Germany Nuclear Science Division Lawrence Berkeley National Laboratory Berkeley USA Gran Sasso Science Institute L’Aquila Italy Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) Fudan University Shanghai People’s Republic of China Massachusetts Institute of Technology Cambridge USA Institute for Data Processing and Electronics Karlsruhe Institute of Technology Karlsruhe Germany Department of Nuclear Engineering University of California Berkeley USA Physik Department Technische Universität München Garching Germany Department of Modern Physics University of Science and Technology of China Hefei People’s Republic of China LSM Laboratoire Souterrain de Modane Modane France Laboratory of Nuclear Problems JINR Dubna Russia Department of Physics and Astronomy Northwestern University Evanston USA Université Grenoble Alpes CNRS Grenoble INP SIMAP Saint Martin d’Héres France
The CUPID-Mo experiment to search for 0 $$\nu \beta \beta $$ decay in $$^{100}$$ Mo has been recently completed after about 1.5 years of operation at Laboratoire Souterrain de Modane (France). It served as a ...
来源: 评论
Fully-convolutional intensive feature flow neural network for text recognition
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Zhao Tang, Zemin Zhang, Zheng Wang, Yang Qin, Jie Wang, Meng School of Computer Science and Technology Soochow University China Key Laboratory of Knowledge Engineering with Big Data Ministry of Education School of Computer and Information Hefei University of Technology Hefei China Bio-Computing Research Center Harbin Institute of Technology Shenzhen518055 China Inception Institute of Artificial Intelligence Abu Dhabi United Arab Emirates
The Deep Convolutional Neural Networks (CNNs) have obtained a great success for pattern recognition, such as recognizing the texts in images. But existing CNNs based frameworks still have several drawbacks: 1) the tra... 详细信息
来源: 评论
Adaptive structure-constrained robust latent low-rank coding for image recovery
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Zhao Wang, Lei Li, Sheng Wang, Yang Zhang, Zheng Zha, Zhengjun Wang, Meng School of Computer Science and Technology Soochow University Suzhou215006 China Key Laboratory of Knowledge Engineering with Big Data Ministry of Education Hefei University of Technology School of Computer Science and Information Engineering Hefei University of Technology Hefei China Department of Computer Science University of Georgia 549 Boyd GSRC AthensGA30602 Shenzhen China School of Information Science and Technology University of Science and Technology of China Hefei China
In this paper, we propose a robust representation learning model called Adaptive Structure-constrained Low-Rank Coding (AS-LRC) for the latent representation of data. To recover the underlying subspaces more accuratel... 详细信息
来源: 评论
QUANTUM LOVÁSZ LOCAL LEMMA: SHEARER’S BOUND IS TIGHT
arXiv
收藏 引用
arXiv 2018年
作者: He, Kun Li, Qian Sun, Xiaoming Zhang, Jiapeng The Key Lab of Data Engineering and Knowledge Engineering MOE Renmin University of China Beijing China Institute of Computing Technology Chinese Academy of Sciences University of Chinese Academy of Sciences Beijing China University of Southern California United States
The Lovász Local Lemma (LLL) is a very powerful tool in combinatorics and probability theory to show the possibility of avoiding all bad events under some weakly dependent conditions. In a seminal paper, Ambainis... 详细信息
来源: 评论
Τ-FPL: Tolerance-constrained learning in linear time  32
Τ-FPL: Tolerance-constrained learning in linear time
收藏 引用
32nd AAAI Conference on Artificial Intelligence, AAAI 2018
作者: Zhang, Ao Li, Nan Pu, Jian Wang, Jun Yan, Junchi Zha, Hongyuan Shanghai Key Laboratory of Trustworthy Computing MOE International Joint Lab of Trustworthy Software School of Computer Science and Software Engineering East China Normal University Shanghai China Institute of Data Science and Technologies Alibaba Group Hangzhou China IBM Research China Georgia Institute of Technology Atlante United States
In many real-world applications, learning a classifier with false-positive rate under a specified tolerance is appealing. Existing approaches either introduce prior knowledge dependent label cost or tune parameters ba... 详细信息
来源: 评论
Learning personalized attribute preference via multi-task auc optimization
arXiv
收藏 引用
arXiv 2019年
作者: Yang, Zhiyong Xu, Qianqian Cao, Xiaochun Huang, Qingming SKLOIS Institute of Information Engineering Chinese Academy of Sciences Beijing China School of Cyber Security University of Chinese Academy of Sciences Beijing China Key Lab of Intell. Info. Process. Inst. of Comput. Tech. CAS Beijing China University of Chinese Academy of Sciences Beijing China Key Laboratory of Big Data Mining and Knowledge Management CAS Beijing China
Traditionally, most of the existing attribute learning methods are trained based on the consensus of annotations aggregated from a limited number of annotators. However, the consensus might fail in settings, especiall... 详细信息
来源: 评论
Impact of Prior knowledge and data Correlation on Privacy Leakage: A Unified Analysis
arXiv
收藏 引用
arXiv 2019年
作者: Li, Yanan Ren, Xuebin Yang, Shusen Yang, Xinyu National Engineering Laboratory for Big Data Analytics [NEL-BDA Xi’an Jiaotong University Xi’an Shaanxi710049 China School of Mathematics and Statistics Xi’an Jiaotong University Xi’an Shaanxi710049 China School of Electronic and Information Engineering Xi’an Jiaotong University Xi’an Shaanxi710049 China Ministry of Education Key Lab for Intelligent Networks and Network Security [MOE KLINNS Lab Xi’an Jiaotong University Xi’an Shaanxi710049 China
It has been widely understood that differential privacy (DP) can guarantee rigorous privacy against adversaries with arbitrary prior knowledge. However, recent studies demonstrate that this may not be true for correla... 详细信息
来源: 评论
Adaptive Structure-Constrained Robust Latent Low-Rank Coding for Image Recovery
Adaptive Structure-Constrained Robust Latent Low-Rank Coding...
收藏 引用
IEEE International Conference on data Mining (ICDM)
作者: Zhao Zhang Lei Wang Sheng Li Yang Wang Zheng Zhang Zhengjun Zha Meng Wang School of Computer Science and Technology Soochow University Suzhou China Key Laboratory of Knowledge Engineering with Big Data (Ministry of Education) Hefei University of Technology School of Computer Science and Information Engineering Hefei University of Technology Hefei China Department of Computer Science University of Georgia Athens GA Bio-Computing Research Center Harbin Institute of Technology (Shenzhen) Shenzhen China School of Information Science and Technology University of Science and Technology of China Hefei China
In this paper, we propose a robust representation learning model called Adaptive Structure-constrained Low-Rank Coding (AS-LRC) for the latent representation of data. To recover the underlying subspaces more accuratel...
来源: 评论