咨询与建议

限定检索结果

文献类型

  • 599 篇 会议
  • 550 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 1,152 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 722 篇 工学
    • 570 篇 计算机科学与技术...
    • 470 篇 软件工程
    • 149 篇 信息与通信工程
    • 75 篇 生物工程
    • 68 篇 控制科学与工程
    • 56 篇 电气工程
    • 43 篇 化学工程与技术
    • 41 篇 电子科学与技术(可...
    • 39 篇 机械工程
    • 35 篇 生物医学工程(可授...
    • 25 篇 仪器科学与技术
    • 25 篇 动力工程及工程热...
    • 21 篇 光学工程
    • 21 篇 材料科学与工程(可...
    • 19 篇 建筑学
    • 17 篇 航空宇航科学与技...
    • 16 篇 交通运输工程
  • 331 篇 理学
    • 181 篇 数学
    • 83 篇 生物学
    • 70 篇 物理学
    • 54 篇 统计学(可授理学、...
    • 40 篇 化学
    • 22 篇 系统科学
  • 293 篇 管理学
    • 175 篇 图书情报与档案管...
    • 145 篇 管理科学与工程(可...
    • 45 篇 工商管理
  • 41 篇 医学
    • 33 篇 临床医学
    • 27 篇 基础医学(可授医学...
  • 40 篇 法学
    • 35 篇 社会学
  • 19 篇 经济学
    • 19 篇 应用经济学
  • 10 篇 教育学
  • 7 篇 文学
  • 6 篇 农学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 59 篇 semantics
  • 35 篇 knowledge engine...
  • 34 篇 data mining
  • 31 篇 training
  • 24 篇 feature extracti...
  • 20 篇 data engineering
  • 20 篇 laboratories
  • 20 篇 computational mo...
  • 20 篇 machine learning
  • 20 篇 data models
  • 19 篇 conferences
  • 19 篇 xml
  • 19 篇 big data
  • 19 篇 information retr...
  • 17 篇 task analysis
  • 17 篇 visualization
  • 16 篇 deep learning
  • 16 篇 databases
  • 15 篇 knowledge manage...
  • 15 篇 knowledge graph

机构

  • 167 篇 school of inform...
  • 104 篇 school of comput...
  • 52 篇 key laboratory o...
  • 49 篇 key laboratory o...
  • 42 篇 college of compu...
  • 32 篇 jiangxi key labo...
  • 32 篇 school of inform...
  • 31 篇 key laboratory o...
  • 29 篇 key laboratory o...
  • 25 篇 key laboratory o...
  • 25 篇 key laboratory o...
  • 23 篇 key laboratory o...
  • 20 篇 key laboratory o...
  • 19 篇 school of inform...
  • 18 篇 key laboratory o...
  • 18 篇 school of econom...
  • 18 篇 key laboratory o...
  • 18 篇 key laboratory o...
  • 16 篇 school of cyber ...
  • 15 篇 school of comput...

作者

  • 54 篇 chen hong
  • 44 篇 du xiaoyong
  • 35 篇 li cuiping
  • 34 篇 wu xindong
  • 32 篇 wang meng
  • 30 篇 hong chen
  • 30 篇 xiaoyong du
  • 29 篇 wang shan
  • 28 篇 zhang jing
  • 26 篇 xindong wu
  • 23 篇 sun geng
  • 20 篇 niyato dusit
  • 19 篇 liu jun
  • 18 篇 meng wang
  • 18 篇 huang qingming
  • 18 篇 hong richang
  • 17 篇 shan wang
  • 17 篇 wang yang
  • 17 篇 xu qianqian
  • 17 篇 wan changxuan

语言

  • 1,068 篇 英文
  • 53 篇 其他
  • 31 篇 中文
检索条件"机构=Key Laboratory of Data Engineering and Knowledge Engineering of MOE"
1152 条 记 录,以下是731-740 订阅
排序:
Fully-convolutional intensive feature flow neural network for text recognition
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Zhao Tang, Zemin Zhang, Zheng Wang, Yang Qin, Jie Wang, Meng School of Computer Science and Technology Soochow University China Key Laboratory of Knowledge Engineering with Big Data Ministry of Education School of Computer and Information Hefei University of Technology Hefei China Bio-Computing Research Center Harbin Institute of Technology Shenzhen518055 China Inception Institute of Artificial Intelligence Abu Dhabi United Arab Emirates
The Deep Convolutional Neural Networks (CNNs) have obtained a great success for pattern recognition, such as recognizing the texts in images. But existing CNNs based frameworks still have several drawbacks: 1) the tra... 详细信息
来源: 评论
Adaptive structure-constrained robust latent low-rank coding for image recovery
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Zhao Wang, Lei Li, Sheng Wang, Yang Zhang, Zheng Zha, Zhengjun Wang, Meng School of Computer Science and Technology Soochow University Suzhou215006 China Key Laboratory of Knowledge Engineering with Big Data Ministry of Education Hefei University of Technology School of Computer Science and Information Engineering Hefei University of Technology Hefei China Department of Computer Science University of Georgia 549 Boyd GSRC AthensGA30602 Shenzhen China School of Information Science and Technology University of Science and Technology of China Hefei China
In this paper, we propose a robust representation learning model called Adaptive Structure-constrained Low-Rank Coding (AS-LRC) for the latent representation of data. To recover the underlying subspaces more accuratel... 详细信息
来源: 评论
QUANTUM LOVÁSZ LOCAL LEMMA: SHEARER’S BOUND IS TIGHT
arXiv
收藏 引用
arXiv 2018年
作者: He, Kun Li, Qian Sun, Xiaoming Zhang, Jiapeng The Key Lab of Data Engineering and Knowledge Engineering MOE Renmin University of China Beijing China Institute of Computing Technology Chinese Academy of Sciences University of Chinese Academy of Sciences Beijing China University of Southern California United States
The Lovász Local Lemma (LLL) is a very powerful tool in combinatorics and probability theory to show the possibility of avoiding all bad events under some weakly dependent conditions. In a seminal paper, Ambainis... 详细信息
来源: 评论
Learning personalized attribute preference via multi-task auc optimization
arXiv
收藏 引用
arXiv 2019年
作者: Yang, Zhiyong Xu, Qianqian Cao, Xiaochun Huang, Qingming SKLOIS Institute of Information Engineering Chinese Academy of Sciences Beijing China School of Cyber Security University of Chinese Academy of Sciences Beijing China Key Lab of Intell. Info. Process. Inst. of Comput. Tech. CAS Beijing China University of Chinese Academy of Sciences Beijing China Key Laboratory of Big Data Mining and Knowledge Management CAS Beijing China
Traditionally, most of the existing attribute learning methods are trained based on the consensus of annotations aggregated from a limited number of annotators. However, the consensus might fail in settings, especiall... 详细信息
来源: 评论
Τ-FPL: Tolerance-constrained learning in linear time  32
Τ-FPL: Tolerance-constrained learning in linear time
收藏 引用
32nd AAAI Conference on Artificial Intelligence, AAAI 2018
作者: Zhang, Ao Li, Nan Pu, Jian Wang, Jun Yan, Junchi Zha, Hongyuan Shanghai Key Laboratory of Trustworthy Computing MOE International Joint Lab of Trustworthy Software School of Computer Science and Software Engineering East China Normal University Shanghai China Institute of Data Science and Technologies Alibaba Group Hangzhou China IBM Research China Georgia Institute of Technology Atlante United States
In many real-world applications, learning a classifier with false-positive rate under a specified tolerance is appealing. Existing approaches either introduce prior knowledge dependent label cost or tune parameters ba... 详细信息
来源: 评论
Impact of Prior knowledge and data Correlation on Privacy Leakage: A Unified Analysis
arXiv
收藏 引用
arXiv 2019年
作者: Li, Yanan Ren, Xuebin Yang, Shusen Yang, Xinyu National Engineering Laboratory for Big Data Analytics [NEL-BDA Xi’an Jiaotong University Xi’an Shaanxi710049 China School of Mathematics and Statistics Xi’an Jiaotong University Xi’an Shaanxi710049 China School of Electronic and Information Engineering Xi’an Jiaotong University Xi’an Shaanxi710049 China Ministry of Education Key Lab for Intelligent Networks and Network Security [MOE KLINNS Lab Xi’an Jiaotong University Xi’an Shaanxi710049 China
It has been widely understood that differential privacy (DP) can guarantee rigorous privacy against adversaries with arbitrary prior knowledge. However, recent studies demonstrate that this may not be true for correla... 详细信息
来源: 评论
Adaptive Structure-Constrained Robust Latent Low-Rank Coding for Image Recovery
Adaptive Structure-Constrained Robust Latent Low-Rank Coding...
收藏 引用
IEEE International Conference on data Mining (ICDM)
作者: Zhao Zhang Lei Wang Sheng Li Yang Wang Zheng Zhang Zhengjun Zha Meng Wang School of Computer Science and Technology Soochow University Suzhou China Key Laboratory of Knowledge Engineering with Big Data (Ministry of Education) Hefei University of Technology School of Computer Science and Information Engineering Hefei University of Technology Hefei China Department of Computer Science University of Georgia Athens GA Bio-Computing Research Center Harbin Institute of Technology (Shenzhen) Shenzhen China School of Information Science and Technology University of Science and Technology of China Hefei China
In this paper, we propose a robust representation learning model called Adaptive Structure-constrained Low-Rank Coding (AS-LRC) for the latent representation of data. To recover the underlying subspaces more accuratel...
来源: 评论
Ngram2vec: Learning improved word representations from ngram co-occurrence statistics
Ngram2vec: Learning improved word representations from ngram...
收藏 引用
2017 Conference on Empirical Methods in Natural Language Processing, EMNLP 2017
作者: Zhao, Zhe Liu, Tao Li, Shen Li, Bofang Du, Xiaoyong School of Information Renmin University of China China Key Laboratory of Data Engineering and Knowledge Engineering MOE China Institute of Chinese Information Processing Beijing Normal University China UltraPower-BNU Joint Laboratory for Artificial Intelligence Beijing Normal University China
The existing word representation methods mostly limit their information source to word co-occurrence statistics. In this paper, we introduce ngrams into four representation methods: SGNS, GloVe, PPMI matrix, and its S... 详细信息
来源: 评论
Heterogeneous-length text topic modeling for reader-Aware multi-document summarization
收藏 引用
ACM Transactions on knowledge Discovery from data 2019年 第4期13卷 42-42页
作者: Qiang, Jipeng Chen, Ping Ding, Wei Wang, Tong Xie, Fei Wu, Xindong Department of Computer Science Yangzhou University China Department of Computer Science University of Massachusetts Boston United States Department of Computer Science and Technology Hefei Normal University China Key Laboratory of Knowledge Engineering with Big Data Hefei University of Technology Ministry of Education Hefei China Mininglamp Academy of Sciences Minininglamp Beijing 100084 China
More and more user comments like Tweets are available, which often contain user concerns. In order to meet the demands of users, a good summary generating from multiple documents should consider reader interests as re... 详细信息
来源: 评论
High-quality high-order harmonic generation through preplasma truncation
收藏 引用
Physical Review E 2019年 第5期100卷 053207-053207页
作者: B. Y. Li F. Liu M. Chen Z. Y. Chen X. H. Yuan S. M. Weng T. Jin S. G. Rykovanov J. W. Wang Z. M. Sheng J. Zhang Key Laboratory for Laser Plasmas (MoE) School of Physics and Astronomy Shanghai Jiao Tong University Shanghai 200240 China Collaborative Innovation Center of IFSA (CICIFSA) Shanghai Jiao Tong University Shanghai 200240 China National Key Laboratory of Shock Wave and Detonation Physics Institute of Fluid Physics China Academy of Engineering Physics Mianyang 621999 China Zhiyuan College Shanghai Jiao Tong University Shanghai 200240 China Center for Computational and Data-Intensive Science and Engineering Skolkovo Institute of Science and Technology Moscow 121205 Russia Shanghai Institute of Optics and Fine Mechanics Chinese Academy of Sciences Shanghai 201800 China Tsung-Dao Lee Institute Shanghai Jiao Tong University Shanghai 200240 China SUPA Department of Physics University of Strathclyde Glasgow G4 0NG United Kingdom
By introducing preplasma truncation to cases with an initial preplasma scale length larger than 0.2λ, the efficiency of high-order harmonics generated from relativistic laser-solid interactions can be enhanced by mor... 详细信息
来源: 评论