咨询与建议

限定检索结果

文献类型

  • 615 篇 会议
  • 551 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 1,169 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 739 篇 工学
    • 587 篇 计算机科学与技术...
    • 479 篇 软件工程
    • 150 篇 信息与通信工程
    • 76 篇 控制科学与工程
    • 74 篇 生物工程
    • 56 篇 电气工程
    • 42 篇 化学工程与技术
    • 41 篇 电子科学与技术(可...
    • 40 篇 机械工程
    • 35 篇 生物医学工程(可授...
    • 25 篇 仪器科学与技术
    • 24 篇 动力工程及工程热...
    • 22 篇 材料科学与工程(可...
    • 21 篇 光学工程
    • 19 篇 建筑学
    • 18 篇 航空宇航科学与技...
    • 15 篇 交通运输工程
  • 334 篇 理学
    • 183 篇 数学
    • 82 篇 生物学
    • 70 篇 物理学
    • 55 篇 统计学(可授理学、...
    • 40 篇 化学
    • 22 篇 系统科学
  • 293 篇 管理学
    • 175 篇 图书情报与档案管...
    • 145 篇 管理科学与工程(可...
    • 46 篇 工商管理
  • 39 篇 法学
    • 34 篇 社会学
  • 38 篇 医学
    • 32 篇 临床医学
    • 24 篇 基础医学(可授医学...
  • 18 篇 经济学
    • 18 篇 应用经济学
  • 10 篇 教育学
  • 7 篇 文学
  • 6 篇 农学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 59 篇 semantics
  • 35 篇 knowledge engine...
  • 34 篇 data mining
  • 32 篇 training
  • 24 篇 feature extracti...
  • 20 篇 data engineering
  • 20 篇 laboratories
  • 20 篇 computational mo...
  • 20 篇 machine learning
  • 20 篇 data models
  • 19 篇 conferences
  • 19 篇 xml
  • 19 篇 big data
  • 19 篇 information retr...
  • 17 篇 task analysis
  • 17 篇 visualization
  • 16 篇 deep learning
  • 16 篇 databases
  • 15 篇 knowledge manage...
  • 15 篇 knowledge graph

机构

  • 169 篇 school of inform...
  • 104 篇 school of comput...
  • 51 篇 key laboratory o...
  • 50 篇 key laboratory o...
  • 48 篇 college of compu...
  • 32 篇 jiangxi key labo...
  • 32 篇 school of inform...
  • 31 篇 key laboratory o...
  • 29 篇 key laboratory o...
  • 29 篇 key laboratory o...
  • 25 篇 key laboratory o...
  • 23 篇 key laboratory o...
  • 20 篇 key laboratory o...
  • 19 篇 school of econom...
  • 19 篇 school of inform...
  • 18 篇 key laboratory o...
  • 18 篇 key laboratory o...
  • 18 篇 key laboratory o...
  • 16 篇 college of compu...
  • 16 篇 school of cyber ...

作者

  • 56 篇 chen hong
  • 44 篇 du xiaoyong
  • 37 篇 li cuiping
  • 33 篇 wu xindong
  • 32 篇 wang meng
  • 30 篇 hong chen
  • 30 篇 xiaoyong du
  • 29 篇 wang shan
  • 28 篇 zhang jing
  • 27 篇 xindong wu
  • 24 篇 sun geng
  • 22 篇 liu jun
  • 21 篇 niyato dusit
  • 18 篇 meng wang
  • 18 篇 huang qingming
  • 18 篇 hong richang
  • 17 篇 shan wang
  • 17 篇 wang yang
  • 17 篇 li jiahui
  • 17 篇 wang jiacheng

语言

  • 1,070 篇 英文
  • 67 篇 其他
  • 32 篇 中文
检索条件"机构=Key Laboratory of Data Engineering and Knowledge Engineering of MOE"
1169 条 记 录,以下是741-750 订阅
iSplit LBI: Individualized partial ranking with ties via split LBI
arXiv
收藏 引用
arXiv 2019年
作者: Xu, Qianqian Sun, Xinwei Yang, Zhiyong Cao, Xiaochun Huang, Qingming Yao, Yuan Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS Microsoft Research Asia State Key Laboratory of Information Security Institute of Information Engineering CAS School of Cyber Security University of Chinese Academy of Sciences School of Computer Science and Tech. University of Chinese Academy of Sciences Key Laboratory of Big Data Mining and Knowledge Management CAS Peng Cheng Laboratory Department of Mathematics Hong Kong University of Science and Technology Hong Kong
Due to the inherent uncertainty of data, the problem of predicting partial ranking from pairwise comparison data with ties has attracted increasing interest in recent years. However, in real-world scenarios, different... 详细信息
来源: 评论
SVM-based deep stacking networks
arXiv
收藏 引用
arXiv 2019年
作者: Wang, Jingyuan Feng, Kai Wu, Junjie MOE Engineering Research Center of Advanced Computer Application Technology School of Computer Science Engineering Beihang University Beijing100191 China Beijing Key Laboratory of Emergency Support Simulation Technologies for City Operations School of Economics and Management Beihang University Beijing100191 China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing100191 China
The deep network model, with the majority built on neural networks, has been proved to be a powerful framework to represent complex data for high performance machine learning. In recent years, more and more studies tu... 详细信息
来源: 评论
Multi-view SVM Classification with Feature Selection
收藏 引用
Procedia Computer Science 2019年 162卷 405-412页
作者: Yuting Niu Yuan Shang Yingjie Tian School of Information Engineering Zhengzhou University Zhengzhou 450001 China Smart City Institute Zhengzhou University Zhengzhou 450001 China Supercomputer Center Smart City Institute Zhengzhou University Henan 450001 China Research Center on Fictitious Economy and Data Science Chinese Academy of Sciences Beijing 100190 China Key Laboratory of Big Data Mining and Knowledge management Beijing 100190 China School of Economics and Management University of Chinese Academy of Sciences Beijing 100190 China
With the rapid development of data mining technology, multi-view learning (MVL) has become a new research field, which has attracted wide attention of scholars at home and abroad. Multi-view learning is to combine mul... 详细信息
来源: 评论
Glucose-Responsive Charge-Switchable Lipid Nanoparticles for Insulin Delivery
收藏 引用
Angewandte Chemie 2023年 第20期135卷
作者: Yun Liu Yanfang Wang Yuejun Yao Juan Zhang Wei Liu Kangfan Ji Xinwei Wei Yuanwu Wang Prof. Xiangsheng Liu Prof. Shiming Zhang Prof. Jinqiang Wang Prof. Zhen Gu Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province College of Pharmaceutical Sciences Zhejiang University 310058 Hangzhou China Jinhua Institute of Zhejiang University 321299 Jinhua China Contribution: Data curation (lead) Formal analysis (lead) ​Investigation (lead) Methodology (lead) Software (lead) Validation (lead) Visualization (lead) Writing - original draft (lead) Writing - review & editing (lead) Contribution: Data curation (supporting) ​Investigation (supporting) Visualization (supporting) Contribution: Data curation (supporting) Formal analysis (supporting) ​Investigation (supporting) Contribution: Formal analysis (supporting) ​Investigation (supporting) Methodology (supporting) Contribution: Formal analysis (supporting) ​Investigation (supporting) Contribution: Writing - review & editing (supporting) Contribution: ​Investigation (supporting) Zhejiang Cancer Hospital Hangzhou Institute of Medicine (HIM) Chinese Academy of Sciences 310022 Hangzhou China Department of Electrical and Electronic Engineering The University of Hong Kong 999077 Hong Kong SAR China Second Affiliated Hospital Zhejiang University School of Medicine 310009 Hangzhou China Contribution: Conceptualization (lead) Data curation (equal) Formal analysis (equal) Funding acquisition (lead) ​Investigation (lead) Methodology (equal) Project administration (lead) Resources (lead) Software (lead) Supervision (lead) Validation (supporting) Visualization (supporting) Writing - review & editing (lead) Department of General Surgery Sir Run Run Shaw Hospital School of Medicine Zhejiang University 310009 Hangzhou China Zhejiang Laboratory of Systems & Precision Medicine Zhejiang University Medical Center 310009 Hangzhou China MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University 310009 Hangzhou China Contribution: Funding acquisition (lead) Project administration (lead) Resources (lead) Softwar
Lipid nanoparticle-based drug delivery systems have a profound clinical impact on nucleic acid-based therapy and vaccination. Recombinant human insulin, a negatively-charged biomolecule like mRNA, may also be delivere... 详细信息
来源: 评论
Learning Structured Twin-Incoherent Twin-Projective Latent Dictionary Pairs for Classification
Learning Structured Twin-Incoherent Twin-Projective Latent D...
收藏 引用
IEEE International Conference on data Mining (ICDM)
作者: Zhao Zhang Yulin Sun Zheng Zhang Yang Wang Guangcan Liu Meng Wang School of Computer Science and Technology Soochow University Suzhou China Key Laboratory of Knowledge Engineering with Big Data (Ministry of Education) Hefei University of Technology School of Computer Science and Information Engineering Hefei University of Technology Hefei China Bio-Computing Research Center Harbin Institute of Technology (Shenzhen) Shenzhen China School of Information and Control Nanjing University of Information Science and Technology Nanjing China
In this paper, we extend the popular dictionary pair learning (DPL) into the scenario of twin-projective latent flexible DPL under a structured twin-incoherence. Technically, a novel framework called Twin-Projective L...
来源: 评论
SEED: Entity oriented information search and exploration  22
SEED: Entity oriented information search and exploration
收藏 引用
22nd International Conference on Intelligent User Interfaces, IUI 2017
作者: Chen, Jun Jacucci, Giulio Chen, Yueguo Ruotsalo, Tuukka School of Information Renmin University of China China Key Laboratory of Data Engineering and Knowledge Engineering MOE China Helsinki Institute for Information Technology HIIT Department of Computer Science University of Helsinki Finland
Entity search and exploration can enrich search user interfaces by presenting relevant information instantly and offering relevant exploration pointers to users. Previous research has demonstrated that large knowledge... 详细信息
来源: 评论
Final results on the decay half-life limit of Mo from the CUPID-Mo experiment
收藏 引用
The European Physical Journal C 2022年 第11期82卷 1-20页
作者: Augier, C. Barabash, A. S. Bellini, F. Benato, G. Beretta, M. Bergé, L. Billard, J. Borovlev, Yu. A. Cardani, L. Casali, N. Cazes, A. Chapellier, M. Chiesa, D. Dafinei, I. Danevich, F. A. De Jesus, M. de Marcillac, P. Dixon, T. Dumoulin, L. Eitel, K. Ferri, F. Fujikawa, B. K. Gascon, J. Gironi, L. Giuliani, A. Grigorieva, V. D. Gros, M. Helis, D. L. Huang, H. Z. Huang, R. Imbert, L. Johnston, J. Juillard, A. Khalife, H. Kleifges, M. Kobychev, V. V. Kolomensky, Yu. G. Konovalov, S. I. Loaiza, P. Ma, L. Makarov, E. P. Mariam, R. Marini, L. Marnieros, S. Navick, X.-F. Nones, C. Norman, E. B. Olivieri, E. Ouellet, J. L. Pagnanini, L. Pattavina, L. Paul, B. Pavan, M. Peng, H. Pessina, G. Pirro, S. Poda, D. V. Polischuk, O. G. Pozzi, S. Previtali, E. Redon, Th. Rojas, A. Rozov, S. Sanglard, V. Scarpaci, J. A. Schmidt, B. Shen, Y. Shlegel, V. N. Singh, V. Tomei, C. Tretyak, V. I. Umatov, V. I. Vagneron, L. Velázquez, M. Welliver, B. Winslow, L. Xue, M. Yakushev, E. Zarytskyy, M. Zolotarova, A. S. Univ Lyon Université Lyon 1 CNRS/IN2P3 IP2I-Lyon Villeurbanne France National Research Centre Kurchatov Institute Institute of Theoretical and Experimental Physics Moscow Russia Dipartimento di Fisica Sapienza Università di Roma Rome Italy INFN Sezione di Roma Rome Italy IRFU CEA Université Paris-Saclay Gif-sur-Yvette France INFN Laboratori Nazionali del Gran Sasso Assergi Italy Department of Physics University of California Berkeley USA Université Paris-Saclay CNRS/IN2P3 IJCLab Orsay France Nikolaev Institute of Inorganic Chemistry Novosibirsk Russia Dipartimento di Fisica Università di Milano-Bicocca Milan Italy INFN Sezione di Milano-Bicocca Milan Italy Institute for Nuclear Research Kyiv Ukraine Institute for Astroparticle Physics Karlsruhe Institute of Technology Karlsruhe Germany Nuclear Science Division Lawrence Berkeley National Laboratory Berkeley USA Gran Sasso Science Institute L’Aquila Italy Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) Fudan University Shanghai People’s Republic of China Massachusetts Institute of Technology Cambridge USA Institute for Data Processing and Electronics Karlsruhe Institute of Technology Karlsruhe Germany Department of Nuclear Engineering University of California Berkeley USA Physik Department Technische Universität München Garching Germany Department of Modern Physics University of Science and Technology of China Hefei People’s Republic of China LSM Laboratoire Souterrain de Modane Modane France Laboratory of Nuclear Problems JINR Dubna Russia Department of Physics and Astronomy Northwestern University Evanston USA Université Grenoble Alpes CNRS Grenoble INP SIMAP Saint Martin d’Héres France
The CUPID-Mo experiment to search for 0 $$\nu \beta \beta $$ decay in $$^{100}$$ Mo has been recently completed after about 1.5 years of operation at Laboratoire Souterrain de Modane (France). It served as a ...
来源: 评论
Fully-convolutional intensive feature flow neural network for text recognition
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Zhao Tang, Zemin Zhang, Zheng Wang, Yang Qin, Jie Wang, Meng School of Computer Science and Technology Soochow University China Key Laboratory of Knowledge Engineering with Big Data Ministry of Education School of Computer and Information Hefei University of Technology Hefei China Bio-Computing Research Center Harbin Institute of Technology Shenzhen518055 China Inception Institute of Artificial Intelligence Abu Dhabi United Arab Emirates
The Deep Convolutional Neural Networks (CNNs) have obtained a great success for pattern recognition, such as recognizing the texts in images. But existing CNNs based frameworks still have several drawbacks: 1) the tra... 详细信息
来源: 评论
Adaptive structure-constrained robust latent low-rank coding for image recovery
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Zhao Wang, Lei Li, Sheng Wang, Yang Zhang, Zheng Zha, Zhengjun Wang, Meng School of Computer Science and Technology Soochow University Suzhou215006 China Key Laboratory of Knowledge Engineering with Big Data Ministry of Education Hefei University of Technology School of Computer Science and Information Engineering Hefei University of Technology Hefei China Department of Computer Science University of Georgia 549 Boyd GSRC AthensGA30602 Shenzhen China School of Information Science and Technology University of Science and Technology of China Hefei China
In this paper, we propose a robust representation learning model called Adaptive Structure-constrained Low-Rank Coding (AS-LRC) for the latent representation of data. To recover the underlying subspaces more accuratel... 详细信息
来源: 评论
QUANTUM LOVÁSZ LOCAL LEMMA: SHEARER’S BOUND IS TIGHT
arXiv
收藏 引用
arXiv 2018年
作者: He, Kun Li, Qian Sun, Xiaoming Zhang, Jiapeng The Key Lab of Data Engineering and Knowledge Engineering MOE Renmin University of China Beijing China Institute of Computing Technology Chinese Academy of Sciences University of Chinese Academy of Sciences Beijing China University of Southern California United States
The Lovász Local Lemma (LLL) is a very powerful tool in combinatorics and probability theory to show the possibility of avoiding all bad events under some weakly dependent conditions. In a seminal paper, Ambainis... 详细信息
来源: 评论