咨询与建议

限定检索结果

文献类型

  • 1,719 篇 期刊文献
  • 1,559 篇 会议
  • 1 册 图书

馆藏范围

  • 3,279 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,148 篇 工学
    • 1,400 篇 计算机科学与技术...
    • 1,203 篇 软件工程
    • 398 篇 信息与通信工程
    • 258 篇 控制科学与工程
    • 249 篇 电气工程
    • 219 篇 化学工程与技术
    • 212 篇 生物工程
    • 183 篇 机械工程
    • 179 篇 生物医学工程(可授...
    • 166 篇 电子科学与技术(可...
    • 143 篇 光学工程
    • 103 篇 仪器科学与技术
    • 84 篇 材料科学与工程(可...
    • 78 篇 动力工程及工程热...
    • 72 篇 建筑学
    • 63 篇 土木工程
    • 63 篇 交通运输工程
  • 1,162 篇 理学
    • 650 篇 数学
    • 262 篇 生物学
    • 216 篇 物理学
    • 197 篇 统计学(可授理学、...
    • 164 篇 化学
    • 99 篇 系统科学
  • 609 篇 管理学
    • 358 篇 管理科学与工程(可...
    • 269 篇 图书情报与档案管...
    • 112 篇 工商管理
  • 168 篇 医学
    • 134 篇 临床医学
    • 97 篇 基础医学(可授医学...
    • 67 篇 药学(可授医学、理...
  • 67 篇 法学
    • 59 篇 社会学
  • 62 篇 农学
  • 41 篇 经济学
  • 15 篇 教育学
  • 8 篇 文学
  • 7 篇 艺术学
  • 3 篇 军事学
  • 1 篇 历史学

主题

  • 121 篇 semantics
  • 88 篇 feature extracti...
  • 86 篇 data mining
  • 79 篇 knowledge engine...
  • 77 篇 computer science
  • 76 篇 deep learning
  • 69 篇 training
  • 65 篇 educational inst...
  • 57 篇 laboratories
  • 57 篇 educational tech...
  • 46 篇 neural networks
  • 43 篇 predictive model...
  • 42 篇 image segmentati...
  • 42 篇 data models
  • 41 篇 computational mo...
  • 39 篇 accuracy
  • 38 篇 reinforcement le...
  • 38 篇 convolution
  • 37 篇 conferences
  • 35 篇 visualization

机构

  • 455 篇 college of compu...
  • 278 篇 key laboratory o...
  • 110 篇 school of automa...
  • 91 篇 school of inform...
  • 88 篇 key laboratory o...
  • 84 篇 key laboratory o...
  • 84 篇 school of comput...
  • 57 篇 key laboratory o...
  • 54 篇 shandong provinc...
  • 47 篇 school of softwa...
  • 47 篇 key laboratory o...
  • 46 篇 shandong enginee...
  • 44 篇 college of softw...
  • 39 篇 key laboratory o...
  • 39 篇 key laboratory o...
  • 35 篇 key laboratory o...
  • 34 篇 college of infor...
  • 31 篇 key laboratory o...
  • 30 篇 key laboratory o...
  • 30 篇 college of compu...

作者

  • 42 篇 yang bo
  • 35 篇 sun geng
  • 35 篇 liang yanchun
  • 32 篇 wu xindong
  • 29 篇 niyato dusit
  • 29 篇 du xiaoyong
  • 28 篇 ouyang dantong
  • 28 篇 kaixiang peng
  • 28 篇 xindong wu
  • 28 篇 chen hong
  • 27 篇 dantong ouyang
  • 26 篇 ouyang jihong
  • 26 篇 li xiongfei
  • 25 篇 li ximing
  • 24 篇 jie dong
  • 23 篇 li cuiping
  • 23 篇 bo yang
  • 23 篇 peng kaixiang
  • 23 篇 yanchun liang
  • 22 篇 liu dayou

语言

  • 3,060 篇 英文
  • 141 篇 其他
  • 90 篇 中文
  • 2 篇 德文
  • 2 篇 法文
  • 1 篇 荷兰文
检索条件"机构=Key Laboratory of Data Engineering and Knowledge Engineering of the Ministry of Education"
3279 条 记 录,以下是141-150 订阅
排序:
PEJA:Progressive Energy-Efficient Join Processing for Sensor Networks
收藏 引用
Journal of Computer Science & Technology 2008年 第6期23卷 957-972页
作者: 赖永炫 陈毅隆 陈红 School of Information Renmin University of China Key Laboratory of Data Engineering and Knowledge Engineering Ministry of Education
Sensor networks are widely used in many applications to collaboratively collect information from the physical environment. In these applications, the exploration of the relationship and linkage of sensing data within ... 详细信息
来源: 评论
Control Logic Routing for Continuous-Flow Microfluidic Biochips Based on Deep Reinforcement Learning
收藏 引用
Jisuanji Yanjiu yu Fazhan/Computer Research and Development 2025年 第4期62卷 950-962页
作者: Cai, Huayang Huang, Xing Liu, Genggeng College of Computer and Data Science Fuzhou University Fuzhou350116 China Engineering Research Center of Big Data Intelligence Fuzhou University Ministry of Education Fuzhou350116 China Fujian Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350116 China School of Computer Science Northwestern Polytechnical University Xi’an710072 China
With the advancement of electronic design automation, continuous-flow microfluidic biochips have become one of the most promising platforms for biochemical experiments. This chip manipulates fluid samples in millilite... 详细信息
来源: 评论
Hierarchical Alignment-enhanced Adaptive Grounding Network for Generalized Referring Expression Comprehension
arXiv
收藏 引用
arXiv 2025年
作者: Wang, Yaxian Ding, Henghui He, Shuting Jiang, Xudong Wei, Bifan Liu, Jun School of Computer Science and Technology Xi'an Jiaotong University China Ministry of Education Key Laboratory of Intelligent Networks and Network Security Xi'an Jiaotong University China Institute of Big Data Fudan University China Shanghai University of Finance and Economics China Nanyang Technological University Singapore School of Continuing Education Xi'an Jiaotong University China Shaanxi Province Key Laboratory of Big Data Knowledge Engineering Xi'an Jiaotong University China
In this work, we address the challenging task of Generalized Referring Expression Comprehension (GREC). Compared to the classic Referring Expression Comprehension (REC) that focuses on single-target expressions, GREC ... 详细信息
来源: 评论
Causality-inspired Unsupervised Domain Adaptation with Target Style Imitation for Medical Image Segmentation
收藏 引用
IEEE Transactions on Circuits and Systems for Video Technology 2025年
作者: Song, Jincai Chen, Haipeng Lyu, Yingda Nie, Weizhi Liu, An-An Jilin University College of Computer Science and Technology Jilin Changchun130012 China Jilin University Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin Changchun130012 China Jilin University Public Computer Education and Research Center Jilin Changchun130012 China Tianjin University School of Electrical and Information Engineering Tianjin300072 China
Deep learning performance may decrease substantially with unseen heterogeneous data. While most unsupervised domain adaptation (UDA) methods seek to address this through image alignment, they often ignore uncertainty ... 详细信息
来源: 评论
Uncertainty-Aware Global-View Reconstruction for Multi-View Multi-Label Feature Selection
arXiv
收藏 引用
arXiv 2025年
作者: Hao, Pingting Liu, Kunpeng Gao, Wanfu College of Computer Science and Technology Jilin University China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University China Department of Computer Science Portland State University PortlandOR97201 United States
In recent years, multi-view multi-label learning (MVML) has gained popularity due to its close resemblance to real-world scenarios. However, the challenge of selecting informative features to ensure both performance a... 详细信息
来源: 评论
CorcPUM: Efficient Processing Using Cross-Point Memory via Cooperative Row-Column Access Pipelining and Adaptive Timing Optimization in Subarrays  23
CorcPUM: Efficient Processing Using Cross-Point Memory via C...
收藏 引用
Proceedings of the 60th Annual ACM/IEEE Design Automation Conference
作者: Chengning Wang Dan Feng Wei Tong Jingning Liu Wuhan National Laboratory for Optoelectronics Key Laboratory of Information Storage System Engineering Research Center of Data Storage Systems and Technology Ministry of Education of China (School of Computer Science and Technology Huazhong University of Science and Technology) Wuhan China
Emerging cross-point memory can in-situ perform vector-matrix multiplication (VMM) for energy-efficient scientific computation. However, parasitic-capacitance-induced row charging and discharging latency is a major pe...
来源: 评论
T-SNVAE: Deep probabilistic learning with local and global structure for industrial process monitoring
IEEE Transactions on Artificial Intelligence
收藏 引用
IEEE Transactions on Artificial Intelligence 2025年
作者: Huang, Jian Liu, Zizhuo Yang, Xu Liu, Yupeng Lv, Zhaomin Peng, Kaixiang Ersoy, Okan K. University of Science and Technology Beijing Key Laboratory of Knowledge Automation for Industrial Processes of Ministry of Education School of Automation and Electrical Engineering China University of Science and Technology Beijing Shunde Innovation School Foshan China Shanghai University of Engineering Science School of Urban Railway Transportation China Purdue University Electrical and Computer Engineering West Lafayette United States
Variational autoencoder is a generative deep learning model with a probabilistic structure, which makes it tolerant to process uncertainties and more suitable for process monitoring. However, the probabilistic model m... 详细信息
来源: 评论
Asynchronous PID Control for T-S Fuzzy Systems Over Gilbert-Elliott Channels Utilizing Detected Channel Modes
收藏 引用
IEEE Transactions on Fuzzy Systems 2025年 第5期33卷 1555-1567页
作者: Wang, Yezheng Wang, Zidong Zou, Lei Ge, Quanbo Dong, Hongli Nanjing University of Information Science and Technology School of Automation Nanjing210044 China Shandong University of Science and Technology College of Electrical Engineering and Automation Qingdao266590 China Brunel University London Department of Computer Science UxbridgeUB8 3PH United Kingdom Donghua University College of Information Science and Technology Shanghai201620 China Ministry of Education Engineering Research Center of Digitalized Textile and Fashion Technology Shanghai201620 China Nanjing University of Information Science and Technology Jiangsu Provincial University Key Laboratory of Big Data Analysis and Intelligent Systems Nanjing210044 China Nanjing210044 China Northeast Petroleum University State Key Laboratory of Continental Shale Oil Daqing163318 China Northeast Petroleum University Artificial Intelligence Energy Research Institute Daqing163318 China Northeast Petroleum University Heilongjiang Provincial Key Laboratory of Networking and Intelligent Control Daqing163318 China
This article is concerned with the H∞ proportional-integral-derivative (PID) control problem for Takagi-Sugeno fuzzy systems over lossy networks that are characterized by the Gilbert-Eillott model. The communication ... 详细信息
来源: 评论
Reconsidering Feature Structure Information and Latent Space Alignment in Partial Multi-label Feature Selection
arXiv
收藏 引用
arXiv 2025年
作者: Pan, Hanlin Liu, Kunpeng Gao, Wanfu College of Computer Science and Technology Jilin University China Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education Jilin University China Department of Computer Science Portland State University PortlandOR97201 United States
The purpose of partial multi-label feature selection is to select the most representative feature subset, where the data comes from partial multi-label datasets that have label ambiguity issues. For label disambiguati... 详细信息
来源: 评论
Using Depth-Enhanced Spatial Transformation for Student Gaze Target Estimation in Dual-View Classroom Images
Using Depth-Enhanced Spatial Transformation for Student Gaze...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Haonan Miao Peizheng Zhao Yuqi Sun Fang Nan Xiaolong Zhang Yaqiang Wu Feng Tian School of Computer Science and Technology Xi’an Jiaotong University Xi’an China Ministry of Education Key Laboratory of Intelligent Networks and Network Security Xi’an Jiaotong University Xi’an China School of Advanced Technology Xi’an Jiaotong-Liverpool University Suzhou China Shaanxi Province Key Laboratory of Big Data Knowledge Engineering Xi’an Jiaotong University Xi’an China
Dual-view gaze target estimation in classroom environments has not been thoroughly explored. Existing methods lack consideration of depth information, primarily focusing on 2D image information and neglecting the late... 详细信息
来源: 评论