咨询与建议

限定检索结果

文献类型

  • 625 篇 会议
  • 522 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 1,150 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 726 篇 工学
    • 556 篇 计算机科学与技术...
    • 460 篇 软件工程
    • 180 篇 信息与通信工程
    • 74 篇 控制科学与工程
    • 73 篇 生物工程
    • 72 篇 电气工程
    • 58 篇 电子科学与技术(可...
    • 40 篇 机械工程
    • 37 篇 化学工程与技术
    • 36 篇 生物医学工程(可授...
    • 35 篇 光学工程
    • 32 篇 仪器科学与技术
    • 28 篇 动力工程及工程热...
    • 23 篇 建筑学
    • 22 篇 网络空间安全
    • 21 篇 材料科学与工程(可...
    • 19 篇 交通运输工程
  • 322 篇 理学
    • 171 篇 数学
    • 80 篇 生物学
    • 77 篇 物理学
    • 52 篇 统计学(可授理学、...
    • 42 篇 化学
    • 20 篇 系统科学
  • 295 篇 管理学
    • 172 篇 图书情报与档案管...
    • 148 篇 管理科学与工程(可...
    • 49 篇 工商管理
  • 47 篇 医学
    • 41 篇 临床医学
    • 31 篇 基础医学(可授医学...
  • 44 篇 法学
    • 38 篇 社会学
  • 19 篇 经济学
    • 19 篇 应用经济学
  • 8 篇 教育学
  • 8 篇 农学
  • 5 篇 文学
  • 2 篇 军事学
  • 1 篇 艺术学

主题

  • 55 篇 semantics
  • 34 篇 data mining
  • 33 篇 knowledge engine...
  • 33 篇 training
  • 26 篇 feature extracti...
  • 22 篇 computational mo...
  • 20 篇 laboratories
  • 19 篇 big data
  • 19 篇 information retr...
  • 19 篇 data models
  • 18 篇 conferences
  • 17 篇 task analysis
  • 17 篇 data engineering
  • 17 篇 machine learning
  • 16 篇 deep learning
  • 16 篇 xml
  • 16 篇 databases
  • 15 篇 visualization
  • 14 篇 knowledge manage...
  • 14 篇 knowledge graph

机构

  • 150 篇 school of inform...
  • 104 篇 school of comput...
  • 51 篇 key laboratory o...
  • 48 篇 key laboratory o...
  • 38 篇 school of cyber ...
  • 32 篇 school of comput...
  • 31 篇 jiangxi key labo...
  • 31 篇 school of inform...
  • 30 篇 key laboratory o...
  • 29 篇 college of compu...
  • 28 篇 key laboratory o...
  • 27 篇 national enginee...
  • 26 篇 hubei key labora...
  • 26 篇 hubei engineerin...
  • 24 篇 key laboratory o...
  • 24 篇 services computi...
  • 24 篇 cluster and grid...
  • 23 篇 key laboratory o...
  • 22 篇 sjtu-pinghu inst...
  • 22 篇 key laboratory o...

作者

  • 47 篇 chen hong
  • 34 篇 wu xindong
  • 34 篇 du xiaoyong
  • 31 篇 wang meng
  • 29 篇 li cuiping
  • 29 篇 jin hai
  • 28 篇 zhang jing
  • 27 篇 xiaoyong du
  • 26 篇 wang shan
  • 25 篇 xindong wu
  • 23 篇 sun geng
  • 23 篇 hong chen
  • 21 篇 niyato dusit
  • 20 篇 hai jin
  • 19 篇 hong richang
  • 18 篇 chen jianping
  • 18 篇 liu jun
  • 18 篇 hu shengshan
  • 18 篇 huang qingming
  • 17 篇 meng wang

语言

  • 1,060 篇 英文
  • 61 篇 其他
  • 29 篇 中文
检索条件"机构=Key Laboratory of Data Engineering and Knowledge Services"
1150 条 记 录,以下是651-660 订阅
排序:
Revisiting Graph based Collaborative Filtering: A Linear Residual Graph Convolutional Network Approach
arXiv
收藏 引用
arXiv 2020年
作者: Chen, Lei Wu, Le Hong, Richang Zhang, Kun Wang, Meng Key Laboratory of Knowledge Engineering with Big Data Hefei University of Technology School of Computer Science and Information Engineering HeFei University of Technology School of Computer Science and Technology University of Science and Technology of China
Graph Convolutional Networks (GCNs) are state-of-the-art graph based representation learning models by iteratively stacking multiple layers of convolution aggregation operations and non-linear activation operations. R... 详细信息
来源: 评论
Practical Interference Exploitation Precoding without Symbol-by-Symbol Optimization: A Block-Level Approach
arXiv
收藏 引用
arXiv 2022年
作者: Li, Ang Shen, Chao Liao, Xuewen Masouros, Christos Lee Swindlehurst, A. The School of Information and Communications Engineering Faculty of Electronic and Information Engineering Xi'an Jiaotong University Shaanxi Xi'An710049 China The State Key Laboratory of Integrated Services Networks Xidian University Shaanxi Xi'An China The Shenzhen Research Institute of Big Data Shenzhen518172 China The Department of Electronic and Electrical Engineering University College London Torrington Place LondonWC1E 7JE United Kingdom The Center for Pervasive Communications and Computing Henry Samueli School of Engineering University of California IrvineCA92697 United States
In this paper, we propose a constructive interference (CI)-based block-level precoding (CI-BLP) approach for the downlink of a multi-user multiple-input single-output (MU-MISO) communication system. Contrary to existi... 详细信息
来源: 评论
Cloud detection from visual band of satellite image based on variance of fractal dimension
收藏 引用
Journal of Systems engineering and Electronics 2019年 第3期30卷 485-491页
作者: TIAN Pingfang GUANG Qiang LIU Xing School of Computer Science and Technology Wuhan University of Science and Technology Wuhan 430065 China Key Laboratory of Intelligent Information Processing and Real-Time Industrial System in Hubei Province Wuhan 430065 China Institute of Big Data Science and Engineering Wuhan University of Science and Technology Wuhan 430065 China Key Laboratory of Rich-Media Knowledge Organization and Service of Digital Publishing Content National Press and Publication Administration Beijing 100038 China
Cover ratio of cloud is a very important factor which affects the quality of a satellite image, therefore cloud detection from satellite images is a necessary step in assessing the image quality. The study on cloud de... 详细信息
来源: 评论
Intervention Prediction for Patients with Pressure Injury Using Random Forest
Intervention Prediction for Patients with Pressure Injury Us...
收藏 引用
IEEE International Conference on Big knowledge (ICBK)
作者: Liuqi Jin Yan Pan Jiaoyun Yang Lin Han Lin Lv Miki Raviv Ning An Key Laboratory of Knowledge Engineering with Big Data of the Ministry of Education School of Computer Science and Information Engineering Hefei University of Technology Hefei China Evidence-Based Nursing Center School of Nursing Lanzhou University Lanzhou China Gansu Provincal Hospital Wound and Ostomy Care Center Lanzhou China Vitalerter LTD Ha-Yarden Airport City Israel
Pressure injury (PI) is one of the major causes of short-term death. Early intervention for patients at risk plays an essential role in PI. However, many nurses may ignore risks. This paper aims to establish a model t... 详细信息
来源: 评论
Corrigendum to “Do we measure novelty when we analyze unusual combinations of cited references? A validation study of bibliometric novelty indicators based on F1000Prime data” [Journal of Informetrics 13/4 (2019) 100979]
收藏 引用
Journal of Informetrics 2024年 第3期18卷
作者: Lutz Bornmann Alexander Tekles Helena H. Zhang Fred Y. Ye Science Policy and Strategy Department Administrative Headquarters of the Max Planck Society Hofgartenstr. 8 80539 Munich Germany University of Passau Innstr. 41 94032 Passau Germany Jiangsu Key Laboratory of Data Engineering and Knowledge Service School of Information Management Nanjing University Nanjing 210023 China
来源: 评论
data-Driven Single Image Deraining: A Comprehensive Review and New Perspectives
TechRxiv
收藏 引用
TechRxiv 2021年
作者: Zhang, Zhao Wei, Yanyan Zhang, Haijun Yang, Yi Yan, Shuicheng Wang, Meng School of Computer Science and Information Engineering Hefei University of Technology Hefei230009 China Key Laboratory of Knowledge Engineering with Big Data Ministry of Education Hefei University of Technology Hefei230009 China Shenzhen China Centre for Artificial Intelligence University of Technology Sydney SydneyNSW Australia Department of Electrical and Computer Engineering National University of Singapore Singapore Hefei University of Technology China
Single Image Deraining task aims at recovering the rain-free background from an image degraded by rain streaks and rain accumulation. For the powerful fitting ability of deep neural networks and massive training data,... 详细信息
来源: 评论
Who knows more? The role of structural hole spanners in accurate information identification on social media
收藏 引用
Pacific-Basin Finance Journal 2025年
作者: Man Guo Wen Long Yanqiang Zhong Wei Zhang School of Economics and Management University of Chinese Academy of Sciences Beijing 100190 PR China Research Center on Fictitious Economy & Data Science Chinese Academy of Sciences Beijing 100190 PR China Key Laboratory of Big Data Mining & Knowledge Management Chinese Academy of Sciences Beijing 100190 PR China Department of Information Systems and Management Engineering Southern University of Science and Technology Shenzhen 518055 PR China
Based on structural hole theory, this study explores the differences in the ability of Chinese social media users with different characteristics to provide accurate information. Using over 20 million interactive data ...
来源: 评论
Deep Reinforcement Learning with Transformers for Text Adventure Games
Deep Reinforcement Learning with Transformers for Text Adven...
收藏 引用
IEEE Symposium on Computational Intelligence and Games, CIG
作者: Yunqiu Xu Ling Chen Meng Fang Yang Wang Chengqi Zhang Centre for Artificial Intelligence University of Technology Sydney Sydney Australia Tencent Robotics X Key Laboratory of Knowledge Engineering with Big Data (Ministry of Education) Hefei University of Technology China
In this paper, we study transformers for text-based games. As a promising replacement of recurrent modules in Natural Language Processing (NLP) tasks, the transformer architecture could be treated as a powerful state ... 详细信息
来源: 评论
Deep Learning on Monocular Object Pose Detection and Tracking: A Comprehensive Overview
arXiv
收藏 引用
arXiv 2021年
作者: Fan, Zhaoxin Zhu, Yazhi He, Yulin Sun, Qi Liu, Hongyan He, Jun Key Laboratory of Data Engineering and Knowledge Engineering of MOE School of Information Renmin University of China Beijing China No. 59 Zhongguancun Street Haidian Dist Beijing100872 China Institute of Information Science Beijing Jiaotong University No.3 Shangyuancun Haidian Dist. Beijing China School of Economics and Management Tsinghua University Haidian Dist Beijing100084 China
Object pose detection and tracking has recently attracted increasing attention due to its wide applications in many areas, such as autonomous driving, robotics, and augmented reality. Among methods for object pose det... 详细信息
来源: 评论
data augmentation in microscopic images for material data mining
收藏 引用
npj Computational Materials 2020年 第1期6卷 601-609页
作者: Boyuan Ma Xiaoyan Wei Chuni Liu Xiaojuan Ban Haiyou Huang Hao Wang Weihua Xue Stephen Wu Mingfei Gao Qing Shen Michele Mukeshimana Adnan Omer Abuassba Haokai Shen Yanjing Su Beijing Advanced Innovation Center for Materials Genome Engineering University of Science and Technology BeijingBeijing 100083China School of Computer and Communication Engineering University of Science and Technology BeijingBeijing 100083China Beijing Key Laboratory of Knowledge Engineering for Materials Science Beijing 100083China Institute for Advanced Materials and Technology University of Science and Technology BeijingBeijing 100083China School of Materials Science and Engineering University of Science and Technology BeijingBeijing 100083China School of Materials Science and Technology Liaoning Technical UniversityLiaoning 114051China The Institute of Statistical Mathematics Research Organization of Information and SystemsTachikawaTokyo 190-8562Japan National Intellectual Property Administration Beijing 100088China Faculty of Engineering Sciences University of BurundiBujumburaBurundi Faculty of Engineering and Technology Palestine Technical University–KadoorieTulkaremPalestine College of Information Science and Engineering China University of PetroleumBeijingChina Key Lab of Petroleum Data Mining China University of PetroleumBeijingChina
Recent progress in material data mining has been driven by high-capacity models trained on large ***,collecting experimental data(real data)has been extremely costly owing to the amount of human effort and expertise *... 详细信息
来源: 评论