咨询与建议

限定检索结果

文献类型

  • 625 篇 会议
  • 518 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 1,144 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 723 篇 工学
    • 554 篇 计算机科学与技术...
    • 460 篇 软件工程
    • 180 篇 信息与通信工程
    • 74 篇 控制科学与工程
    • 73 篇 生物工程
    • 72 篇 电气工程
    • 57 篇 电子科学与技术(可...
    • 40 篇 机械工程
    • 37 篇 化学工程与技术
    • 36 篇 生物医学工程(可授...
    • 35 篇 光学工程
    • 32 篇 仪器科学与技术
    • 28 篇 动力工程及工程热...
    • 23 篇 建筑学
    • 22 篇 网络空间安全
    • 21 篇 材料科学与工程(可...
    • 19 篇 交通运输工程
  • 322 篇 理学
    • 171 篇 数学
    • 80 篇 生物学
    • 77 篇 物理学
    • 52 篇 统计学(可授理学、...
    • 42 篇 化学
    • 20 篇 系统科学
  • 295 篇 管理学
    • 172 篇 图书情报与档案管...
    • 148 篇 管理科学与工程(可...
    • 49 篇 工商管理
  • 47 篇 医学
    • 41 篇 临床医学
    • 31 篇 基础医学(可授医学...
  • 44 篇 法学
    • 38 篇 社会学
  • 19 篇 经济学
    • 19 篇 应用经济学
  • 8 篇 教育学
  • 8 篇 农学
  • 5 篇 文学
  • 2 篇 军事学
  • 1 篇 艺术学

主题

  • 55 篇 semantics
  • 34 篇 data mining
  • 33 篇 knowledge engine...
  • 33 篇 training
  • 26 篇 feature extracti...
  • 22 篇 computational mo...
  • 20 篇 laboratories
  • 19 篇 big data
  • 19 篇 information retr...
  • 19 篇 data models
  • 18 篇 conferences
  • 17 篇 task analysis
  • 17 篇 data engineering
  • 17 篇 machine learning
  • 16 篇 deep learning
  • 16 篇 xml
  • 16 篇 databases
  • 15 篇 visualization
  • 14 篇 knowledge manage...
  • 14 篇 knowledge graph

机构

  • 150 篇 school of inform...
  • 103 篇 school of comput...
  • 50 篇 key laboratory o...
  • 48 篇 key laboratory o...
  • 38 篇 school of cyber ...
  • 32 篇 school of comput...
  • 31 篇 jiangxi key labo...
  • 31 篇 school of inform...
  • 30 篇 key laboratory o...
  • 29 篇 college of compu...
  • 28 篇 key laboratory o...
  • 27 篇 national enginee...
  • 26 篇 hubei key labora...
  • 26 篇 hubei engineerin...
  • 24 篇 key laboratory o...
  • 24 篇 services computi...
  • 24 篇 cluster and grid...
  • 23 篇 key laboratory o...
  • 22 篇 sjtu-pinghu inst...
  • 22 篇 key laboratory o...

作者

  • 47 篇 chen hong
  • 34 篇 wu xindong
  • 34 篇 du xiaoyong
  • 31 篇 wang meng
  • 29 篇 li cuiping
  • 29 篇 jin hai
  • 28 篇 zhang jing
  • 27 篇 xiaoyong du
  • 26 篇 wang shan
  • 23 篇 sun geng
  • 23 篇 hong chen
  • 23 篇 xindong wu
  • 21 篇 niyato dusit
  • 20 篇 hai jin
  • 19 篇 hong richang
  • 18 篇 chen jianping
  • 18 篇 liu jun
  • 18 篇 hu shengshan
  • 18 篇 huang qingming
  • 17 篇 meng wang

语言

  • 1,054 篇 英文
  • 61 篇 其他
  • 29 篇 中文
检索条件"机构=Key Laboratory of Data Engineering and Knowledge Services"
1144 条 记 录,以下是771-780 订阅
排序:
Non-volatile Optical Switch Based on a GST-Loaded Directional Coupler
Non-volatile Optical Switch Based on a GST-Loaded Directiona...
收藏 引用
Optoelectronics Global Conference (OGC)
作者: Hanyu Zhang Linjie Zhou Liangjun Lu Jianping Chen B. M. A. Rahman Shanghai Institute for Advanced Communication and Data Science Shanghai Key Lab of Navigation and Location Services State Key Laboratory of Advanced Optical Communication Systems and Networks SJTU Shanghai China Department of Electrical and Electronic Engineering University of London London U.K.
We present a non-volatile optical switch based on a directional coupler comprising a silicon-Ge2Sb2Te5 (GST) hybrid waveguide. The non-volatility of GST makes it attractive for reducing static power consumption in opt... 详细信息
来源: 评论
Research on the MEG of depression patients based on multivariate TE partial information decomposition
收藏 引用
IOP Conference Series: Materials Science and engineering 2020年 第5期768卷
作者: Zihan Chen Yunjie Fang Wei Yan Jun Wang Jin Li Fengzhen Hou Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province Nanjing University of Posts and Telecommunications Nanjing China Department of Psychiatry The Affiliated Brain Hospital of Nanjing Medical University Nanjing China College of Physics and Information Technology Shaanxi Normal University Xi'an China Key Laboratory of Biomedical Functional Materials China Pharmaceutical University Nanjing 210009 China
Transfer entropy (TE) has been broadly used in the field of neurosciences. In this paper, the partial information decomposition algorithm is employed to decompose multivariate TE into synergistic, redundant and unique...
来源: 评论
Ngram2vec: Learning improved word representations from ngram co-occurrence statistics
Ngram2vec: Learning improved word representations from ngram...
收藏 引用
2017 Conference on Empirical Methods in Natural Language Processing, EMNLP 2017
作者: Zhao, Zhe Liu, Tao Li, Shen Li, Bofang Du, Xiaoyong School of Information Renmin University of China China Key Laboratory of Data Engineering and Knowledge Engineering MOE China Institute of Chinese Information Processing Beijing Normal University China UltraPower-BNU Joint Laboratory for Artificial Intelligence Beijing Normal University China
The existing word representation methods mostly limit their information source to word co-occurrence statistics. In this paper, we introduce ngrams into four representation methods: SGNS, GloVe, PPMI matrix, and its S... 详细信息
来源: 评论
BigNeuron: a resource to benchmark and predict performance of algorithms for automated tracing of neurons in light microscopy datasets
收藏 引用
Nature methods 2023年 第6期20卷 824-835页
作者: Linus Manubens-Gil Zhi Zhou Hanbo Chen Arvind Ramanathan Xiaoxiao Liu Yufeng Liu Alessandro Bria Todd Gillette Zongcai Ruan Jian Yang Miroslav Radojević Ting Zhao Li Cheng Lei Qu Siqi Liu Kristofer E Bouchard Lin Gu Weidong Cai Shuiwang Ji Badrinath Roysam Ching-Wei Wang Hongchuan Yu Amos Sironi Daniel Maxim Iascone Jie Zhou Erhan Bas Eduardo Conde-Sousa Paulo Aguiar Xiang Li Yujie Li Sumit Nanda Yuan Wang Leila Muresan Pascal Fua Bing Ye Hai-Yan He Jochen F Staiger Manuel Peter Daniel N Cox Michel Simonneau Marcel Oberlaender Gregory Jefferis Kei Ito Paloma Gonzalez-Bellido Jinhyun Kim Edwin Rubel Hollis T Cline Hongkui Zeng Aljoscha Nern Ann-Shyn Chiang Jianhua Yao Jane Roskams Rick Livesey Janine Stevens Tianming Liu Chinh Dang Yike Guo Ning Zhong Georgia Tourassi Sean Hill Michael Hawrylycz Christof Koch Erik Meijering Giorgio A Ascoli Hanchuan Peng Institute for Brain and Intelligence Southeast University Nanjing China. Microsoft Corporation Redmond WA USA. Tencent AI Lab Bellevue WA USA. Computing Environment and Life Sciences Directorate Argonne National Laboratory Lemont IL USA. Kaya Medical Seattle WA USA. University of Cassino and Southern Lazio Cassino Italy. Center for Neural Informatics Structures and Plasticity Krasnow Institute for Advanced Study George Mason University Fairfax VA USA. Faculty of Information Technology Beijing University of Technology Beijing China. Beijing International Collaboration Base on Brain Informatics and Wisdom Services Beijing China. Nuctech Netherlands Rotterdam the Netherlands. Janelia Research Campus Howard Hughes Medical Institute Ashburn VA USA. Department of Electrical and Computer Engineering University of Alberta Edmonton Alberta Canada. Ministry of Education Key Laboratory of Intelligent Computation and Signal Processing Anhui University Hefei China. Paige AI New York NY USA. Scientific Data Division and Biological Systems and Engineering Division Lawrence Berkeley National Lab Berkeley CA USA. Helen Wills Neuroscience Institute and Redwood Center for Theoretical Neuroscience UC Berkeley Berkeley CA USA. RIKEN AIP Tokyo Japan. Research Center for Advanced Science and Technology (RCAST) The University of Tokyo Tokyo Japan. School of Computer Science University of Sydney Sydney New South Wales Australia. Texas A&M University College Station TX USA. Cullen College of Engineering University of Houston Houston TX USA. Graduate Institute of Biomedical Engineering National Taiwan University of Science and Technology Taipei Taiwan. National Centre for Computer Animation Bournemouth University Poole UK. PROPHESEE Paris France. Department of Neuroscience Columbia University New York NY USA. Mortimer B. Zuckerman Mind Brain Behavior Institute Columbia University New York NY USA. Department of Computer Science Northern Illinois Universit
BigNeuron is an open community bench-testing platform with the goal of setting open standards for accurate and fast automatic neuron tracing. We gathered a diverse set of image volumes across several species that is r...
来源: 评论
Online Robust Lagrangian Support Vector Machine against Adversarial Attack
收藏 引用
Procedia Computer Science 2018年 139卷 173-181页
作者: Yue Ma Yiwei He Yingjie Tian School of Mathematical Sciences University of Chinese Academy of Sciences Beijing 100049 China Research Center on Fictitious Economy and Data Science Chinese Academy of Sciences Beijing 100190 China School of Computer and Control Engineering University of Chinese Academy of Sciences Beijing 100049 China Key Laboratory of Big Data Mining and Knowledge management Beijing 100190 China School of Economics and Management University of Chinese Academy of Sciences Beijing 100190 China
In adversarial environment such as intrusion detection and spam filtering, the adversary-intruder or spam advertiser may attempt to produce contaminate training instance and manipulate the learning of classifier. In o... 详细信息
来源: 评论
PIE: A Personalized Incentive for Location-aware Mobile Crowd Sensing
PIE: A Personalized Incentive for Location-aware Mobile Crow...
收藏 引用
IEEE Symposium on Computers and Communications
作者: Yao Wu Yuncheng Wu Juru Zeng Hong Chen Cuiping Li Key Laboratory of Data Engineering and Knowledge Engineering of Ministry of Education Renmin University of China Beijing China
Mobile crowd sensing has the potential to acquire massive data from places and address large-scale societal problems. However, most currently existing crowd sensing systems suffer from insufficient participants. There... 详细信息
来源: 评论
Fast & scalable distributed set similarity joins for big data analytics  33
Fast & scalable distributed set similarity joins for big dat...
收藏 引用
33rd IEEE International Conference on data engineering, ICDE 2017
作者: Rong, Chuitian Lin, Chunbin Silva, Yasin N. Wang, Jianguo Lu, Wei Du, Xiaoyong Tianjin Polytechnic University China Arizona State University United States University of California San Diego United States Key Laboratory of Data Engineering and Knowledge Engineering Ministry of Education China School of Information Renmin University of China China
Set similarity join is an essential operation in big data analytics, e.g., data integration and data cleaning, that finds similar pairs from two collections of sets. To cope with the increasing scale of the data, dist... 详细信息
来源: 评论
Has “Intelligent Manufacturing” Promoted the Productivity of Manufacturing Sector?--Evidence from China’s Listed Firms
收藏 引用
Procedia Computer Science 2018年 139卷 299-305页
作者: Yi Qu Yong Shi Kun Guo Yuanchun Zheng School of Economics and Management University of Chinese Academy of Sciences Beijing 100190 China Key Laboratory of Big Data Mining and Knowledge Management Chinese Academy of Sciences Beijing 100190 China Research Center on Fictitious Economy & Data Science Chinese Academy of Sciences Beijing 100190 China College of Information Science and Technology University of Nebraska at Omaha NE 68182 USA School of Computing and Control Engineering University of Chinese Academy of Sciences Beijing 100190 China
Intelligent Manufacturing has attracted global and continuous attention recent years, with more and more intelligent devices and systems applied in production. In this paper, we take China’s manufacturing listed firm... 详细信息
来源: 评论
Deep Text Classification Can be Fooled
arXiv
收藏 引用
arXiv 2017年
作者: Liang, Bin Li, Hongcheng Su, Miaoqiang Bian, Pan Li, Xirong Shi, Wenchang School of Information Renmin University of China Beijing China Key laboratory of Data Engineering and Knowledge Engineering MOE Beijing China
In this paper, we present an effective method to craft text adversarial samples, revealing one important yet underestimated fact that DNN-based text classifiers are also prone to adversarial sample attack. Specificall... 详细信息
来源: 评论
Initializing convolutional filters with semantic features for text classification
Initializing convolutional filters with semantic features fo...
收藏 引用
2017 Conference on Empirical Methods in Natural Language Processing, EMNLP 2017
作者: Li, Shen Zhao, Zhe Liu, Tao Hu, Renfen Du, Xiaoyong Institute of Chinese Information Processing Beijing Normal University China UltraPower-BNU Joint Laboratory for Artificial Intelligence Beijing Normal University China College of Chinese Language and Culture Beijing Normal University China School of Information Renmin University of China China Key Laboratory of Data Engineering and Knowledge Engineering MOE China
Convolutional Neural Networks (CNNs) are widely used in NLP tasks. This paper presents a novel weight initialization method to improve the CNNs for text classification. Instead of randomly initializing the convolution... 详细信息
来源: 评论