咨询与建议

限定检索结果

文献类型

  • 899 篇 期刊文献
  • 651 篇 会议
  • 1 册 图书

馆藏范围

  • 1,551 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,067 篇 工学
    • 764 篇 计算机科学与技术...
    • 653 篇 软件工程
    • 286 篇 信息与通信工程
    • 187 篇 电气工程
    • 153 篇 生物工程
    • 114 篇 控制科学与工程
    • 108 篇 生物医学工程(可授...
    • 101 篇 光学工程
    • 95 篇 电子科学与技术(可...
    • 60 篇 机械工程
    • 50 篇 化学工程与技术
    • 45 篇 交通运输工程
    • 44 篇 仪器科学与技术
    • 35 篇 网络空间安全
    • 30 篇 建筑学
    • 30 篇 安全科学与工程
    • 29 篇 土木工程
  • 580 篇 理学
    • 317 篇 数学
    • 170 篇 生物学
    • 119 篇 物理学
    • 110 篇 统计学(可授理学、...
    • 55 篇 化学
    • 46 篇 系统科学
  • 300 篇 管理学
    • 172 篇 管理科学与工程(可...
    • 141 篇 图书情报与档案管...
    • 70 篇 工商管理
  • 98 篇 医学
    • 90 篇 临床医学
    • 78 篇 基础医学(可授医学...
    • 56 篇 药学(可授医学、理...
  • 42 篇 法学
    • 34 篇 社会学
  • 24 篇 经济学
  • 19 篇 农学
  • 13 篇 教育学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 80 篇 semantics
  • 61 篇 feature extracti...
  • 43 篇 deep learning
  • 43 篇 training
  • 32 篇 data models
  • 31 篇 computational mo...
  • 29 篇 accuracy
  • 28 篇 convolution
  • 28 篇 federated learni...
  • 25 篇 machine learning
  • 24 篇 predictive model...
  • 23 篇 data mining
  • 22 篇 contrastive lear...
  • 21 篇 deep neural netw...
  • 20 篇 image segmentati...
  • 20 篇 neural networks
  • 19 篇 visualization
  • 18 篇 graph neural net...
  • 18 篇 robustness
  • 17 篇 codes

机构

  • 54 篇 shandong provinc...
  • 46 篇 shandong enginee...
  • 44 篇 key laboratory o...
  • 43 篇 college of compu...
  • 41 篇 national enginee...
  • 39 篇 beijing advanced...
  • 36 篇 school of cyber ...
  • 35 篇 school of comput...
  • 35 篇 college of compu...
  • 33 篇 nanyang technolo...
  • 33 篇 university of ch...
  • 28 篇 school of big da...
  • 27 篇 peng cheng labor...
  • 26 篇 hubei key labora...
  • 26 篇 national enginee...
  • 25 篇 hubei engineerin...
  • 24 篇 school of comput...
  • 23 篇 services computi...
  • 23 篇 cluster and grid...
  • 21 篇 college of compu...

作者

  • 68 篇 niyato dusit
  • 30 篇 jin hai
  • 22 篇 sun geng
  • 19 篇 shen linlin
  • 19 篇 hai jin
  • 18 篇 hu shengshan
  • 18 篇 wang jiacheng
  • 17 篇 huang qingming
  • 16 篇 liu ya-feng
  • 16 篇 xu qianqian
  • 15 篇 li jiahui
  • 15 篇 liu bin
  • 14 篇 huang sheng
  • 14 篇 zhang leo yu
  • 13 篇 chen yanping
  • 13 篇 cao xiaochun
  • 13 篇 li minghui
  • 12 篇 zhou ziqi
  • 12 篇 wang lihui
  • 12 篇 mingzhe chen

语言

  • 1,405 篇 英文
  • 125 篇 其他
  • 34 篇 中文
检索条件"机构=Key Laboratory of Data Engineering and Visual Computing"
1551 条 记 录,以下是1391-1400 订阅
排序:
Exploiting Gabor Feature Extraction Method for Chinese Character Writing Quality Evaluation
收藏 引用
Journal of Physics: Conference Series 2020年 第1期1575卷
作者: Zhixiao Wang Wenyao Yan Mingtao Guo Jiulong Zhang School of Computer Science and Engineering Xi'an University of Technology Xi'an 710048 China Shaanxi Key Laboratory Xi'an of Network Computing and Security Technology China School of Data Science and Computer Xi'an innovation college of Yan'an University Xi'an 710100 China
The automatic evaluation of Chinese character writing quality has a wide application prospect. Most of the existing evaluation methods of Chinese character writing quality are based on radical segmentation and feature...
来源: 评论
SVM-based deep stacking networks
arXiv
收藏 引用
arXiv 2019年
作者: Wang, Jingyuan Feng, Kai Wu, Junjie MOE Engineering Research Center of Advanced Computer Application Technology School of Computer Science Engineering Beihang University Beijing100191 China Beijing Key Laboratory of Emergency Support Simulation Technologies for City Operations School of Economics and Management Beihang University Beijing100191 China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing100191 China
The deep network model, with the majority built on neural networks, has been proved to be a powerful framework to represent complex data for high performance machine learning. In recent years, more and more studies tu... 详细信息
来源: 评论
A rich ranking model based on the matthew effect optimization  7th
A rich ranking model based on the matthew effect optimizatio...
收藏 引用
7th International Conference on Computational data and Social Networks, CSoNet 2018
作者: Li, Jinzhong Liu, Guanjun Department of Computer Science and Technology College of Electronic and Information Engineering Jinggangshan University Ji’an343009 China Network and Data Security Key Laboratory of Sichuan Province University of Electronic Science and Technology of China Chengdu610054 China Department of Computer Science and Technology College of Electronic and Information Engineering Tongji University Shanghai201804 China Key Laboratory of Embedded System and Service Computing Ministry of Education Tongji University Shanghai201804 China
Most existing approaches of learning to rank treat the effectiveness of each query equally which results in a relatively lower ratio of queries with high effectiveness (i.e. rich queries) in the produced ranking model... 详细信息
来源: 评论
A survey on edge computing systems and tools
arXiv
收藏 引用
arXiv 2019年
作者: Liu, Fang Tang, Guoming Li, Youhuizi Cai, Zhiping Zhang, Xingzhou Zhou, Tongqing School of Data and Computer Science Sun Yat-sen University GuangzhouGuangdong China Key Laboratory of Science and Technology on Information System Engineering National University of Defense Technology ChangshaHunan China School of Compute Science and Technology Hangzhou Dianzi University China College of Computer National University of Defense Technology ChangshaHunan China State Key Laboratory of Computer Architecture Institute of Computing Technology Chinese Academy of Sciences China
—Driven by the visions of Internet of Things and 5G communications, the edge computing systems integrate computing, storage and network resources at the edge of the network to provide computing infrastructure, enabli... 详细信息
来源: 评论
Word2Cluster: A New Multi-Label Text Clustering Algorithm with an Adaptive Clusters Number
Word2Cluster: A New Multi-Label Text Clustering Algorithm wi...
收藏 引用
2019 IEEE Global Communications Conference (GLOBECOM)
作者: Kaili Mao Jianwei Niu Xuefeng Liu Shui Yu Longbo Zhao State Key Laboratory of Virtual Reality Technology and Systems School of Computer Science and Engineering Beihang University Beijing China Beijing Advanced Innovation Center for Big Data and Brain Computing (BDBC) Beihang University Hangzhou Innovation Research Institute Beihang University School of Computer Science and Cyber Engineering Guangzhou University Guangdong China China aerospace science and industry corporation China
Text clustering has been widely used in many Natural Language Processing (NLP) applications such as text summarization and news recommendation. However, most of the current algorithms need to predefine a clustering nu... 详细信息
来源: 评论
Why is the Winner the Best?
Why is the Winner the Best?
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: M. Eisenmann A. Reinke V. Weru M. D. Tizabi F. Isensee T. J. Adler S. Ali V. Andrearczyk M. Aubreville U. Baid S. Bakas N. Balu S. Bano J. Bernal S. Bodenstedt A. Casella V. Cheplygina M. Daum M. De Bruijne A. Depeursinge R. Dorent J. Egger D. G. Ellis S. Engelhardt M. Ganz N. Ghatwary G. Girard P. Godau A. Gupta L. Hansen K. Harada M. Heinrich N. Heller A. Hering A. Huaulmé P. Jannin A. E. Kavur O. Kodym M. Kozubek J. Li H. Li J. Ma C. Martín-Isla B. Menze A. Noble V. Oreiller N. Padoy S. Pati K. Payette T. Rädsch J. Rafael-Patiño V. Singh Bawa S. Speidel C. H. Sudre K. Van Wijnen M. Wagner D. Wei A. Yamlahi M. H. Yap C. Yuan M. Zenk A. Zia D. Zimmerer D. Aydogan B. Bhattarai L. Bloch R. Brüngel J. Cho C. Choi Q. Dou I. Ezhov C. M. Friedrich C. Fuller R. R. Gaire A. Galdran Á. García Faura M. Grammatikopoulou S. Hong M. Jahanifar I. Jang A. Kadkhodamohammadi I. Kang F. Kofler S. Kondo H. Kuijf M. Li M. Luu T. Martinčič P. Morais M. A. Naser B. Oliveira D. Owen S. Pang J. Park S. Park S. Płotka E. Puybareau N. Rajpoot K. Ryu N. Saeed A. Shephard P. Shi D. Štepec R. Subedi G. Tochon H. R. Torres H. Urien J. L. Vilaça K. A. Wahid H. Wang J. Wang L. Wang X. Wang B. Wiestler M. Wodzinski F. Xia J. Xie Z. Xiong S. Yang Y. Yang Z. Zhao K. Maier-Hein P. F. Jäger A. Kopp-Schneider L. Maier-Hein Division of Intelligent Medical Systems German Cancer Research Center (DKFZ) Heidelberg Germany Helmholtz Imaging German Cancer Research Center (DKFZ) Heidelberg Germany Faculty of Mathematics and Computer Science Heidelberg University Heidelberg Germany Division of Biostatistics German Cancer Research Center (DKFZ) Heidelberg Germany Division of Medical Image Computing German Cancer Research Center (DKFZ) Heidelberg Germany Faculty of Engineering and Physical Sciences School of Computing University of Leeds Leeds UK Institute of Informatics School of Management HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland Sierre Switzerland Department of Nuclear Medicine and Molecular Imaging Lausanne University Hospital Lausanne Switzerland Technische Hochschule Ingolstadt Ingolstadt Germany Center for Artificial Intelligence and Data Science for Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA) University of Pennsylvania Philadelphia PA USA Department of Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Radiology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Radiology University of Washington Seattle WA USA Department of Computer Science Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS) University College London London UK Universitat Autònoma de Barcelona & Computer Vision Center Barcelona Spain Division of Translational Surgical Oncology National Center for Tumor Diseases (NCT/UCC) Dresden Dresden Germany Department of Advanced Robotics Istituto Italiano di Tecnologia Italy Department of Electronics Information and Bioengineering Politecnico di Milano Milan Italy IT University of Copenhagen Copenhagen Denmark Department of General Visceral and Transplantation Surgery Heidelberg University Hospital Heidelberg Germany Department of Radiology and Nuc
International benchmarking competitions have become fundamental for the comparative performance assessment of image analysis methods. However, little attention has been given to investigating what can be learnt from t...
来源: 评论
Robust Matrix Discriminative Analysis for Feature Extraction From Hyperspectral Images
收藏 引用
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 2017年 第5期10卷 2002-2011页
作者: Hang, Renlong Liu, Qingshan Sun, Yubao Yuan, Xiaotong Pei, Hucheng Plaza, Javier Plaza, Antonio Jiangsu Key Laboratory of Big Data Analysis Technology Nanjing University of Information Science and Technology Nanjing China Beijing Electro-Mechanical Engineering Institute Beijing China Hyperspectral Computing Laboratory University of Extremadura Caceres Spain
Linear discriminative analysis (LDA) is an effective feature extraction method for hyperspectral image (HSI) classification. Most of the existing LDA-related methods are based on spectral features, ignoring spatial in... 详细信息
来源: 评论
News Recommendation System Based on Collaborative Filtering and SVM
News Recommendation System Based on Collaborative Filtering ...
收藏 引用
2018 3rd International Conference on Automation, Mechanical and Electrical engineering (AMEE 2018)
作者: Wan-li SONG School of Information Engineering Nanjing Xiaozhuang University Key Laboratory of Trusted Cloud Computing and Big Data Analysis Nanjing Xiao Zhuang University
News system requires news classification and personalized recommendation to improve user's efficiency and interest, and to enhance user's experiences. This paper constructed a news automatic classification and... 详细信息
来源: 评论
Fully-convolutional intensive feature flow neural network for text recognition
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Zhao Tang, Zemin Zhang, Zheng Wang, Yang Qin, Jie Wang, Meng School of Computer Science and Technology Soochow University China Key Laboratory of Knowledge Engineering with Big Data Ministry of Education School of Computer and Information Hefei University of Technology Hefei China Bio-Computing Research Center Harbin Institute of Technology Shenzhen518055 China Inception Institute of Artificial Intelligence Abu Dhabi United Arab Emirates
The Deep Convolutional Neural Networks (CNNs) have obtained a great success for pattern recognition, such as recognizing the texts in images. But existing CNNs based frameworks still have several drawbacks: 1) the tra... 详细信息
来源: 评论
Learning Structured Twin-Incoherent Twin-Projective Latent Dictionary Pairs for Classification
Learning Structured Twin-Incoherent Twin-Projective Latent D...
收藏 引用
IEEE International Conference on data Mining (ICDM)
作者: Zhao Zhang Yulin Sun Zheng Zhang Yang Wang Guangcan Liu Meng Wang School of Computer Science and Technology Soochow University Suzhou China Key Laboratory of Knowledge Engineering with Big Data (Ministry of Education) Hefei University of Technology School of Computer Science and Information Engineering Hefei University of Technology Hefei China Bio-Computing Research Center Harbin Institute of Technology (Shenzhen) Shenzhen China School of Information and Control Nanjing University of Information Science and Technology Nanjing China
In this paper, we extend the popular dictionary pair learning (DPL) into the scenario of twin-projective latent flexible DPL under a structured twin-incoherence. Technically, a novel framework called Twin-Projective L...
来源: 评论