咨询与建议

限定检索结果

文献类型

  • 362 篇 期刊文献
  • 187 篇 会议

馆藏范围

  • 549 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 399 篇 工学
    • 342 篇 计算机科学与技术...
    • 292 篇 软件工程
    • 64 篇 信息与通信工程
    • 53 篇 生物工程
    • 29 篇 控制科学与工程
    • 29 篇 化学工程与技术
    • 17 篇 光学工程
    • 13 篇 电气工程
    • 12 篇 生物医学工程(可授...
    • 11 篇 机械工程
    • 11 篇 安全科学与工程
    • 10 篇 建筑学
    • 10 篇 土木工程
    • 9 篇 交通运输工程
    • 9 篇 网络空间安全
    • 6 篇 材料科学与工程(可...
    • 6 篇 电子科学与技术(可...
  • 208 篇 理学
    • 120 篇 数学
    • 58 篇 生物学
    • 48 篇 统计学(可授理学、...
    • 33 篇 化学
    • 31 篇 物理学
    • 22 篇 系统科学
  • 100 篇 管理学
    • 70 篇 图书情报与档案管...
    • 38 篇 管理科学与工程(可...
    • 13 篇 工商管理
  • 25 篇 法学
    • 23 篇 社会学
  • 15 篇 医学
    • 8 篇 临床医学
    • 7 篇 基础医学(可授医学...
  • 6 篇 教育学
    • 6 篇 教育学
  • 5 篇 经济学
  • 5 篇 文学
  • 4 篇 农学

主题

  • 19 篇 semantics
  • 18 篇 recommender syst...
  • 18 篇 computational li...
  • 14 篇 graph neural net...
  • 14 篇 machine learning
  • 12 篇 reinforcement le...
  • 12 篇 knowledge graph
  • 9 篇 distillation
  • 9 篇 benchmarking
  • 9 篇 forecasting
  • 8 篇 diffusion
  • 7 篇 contrastive lear...
  • 6 篇 deep learning
  • 6 篇 computer vision
  • 5 篇 object detection
  • 5 篇 tensors
  • 5 篇 embeddings
  • 5 篇 artificial intel...
  • 4 篇 image enhancemen...
  • 4 篇 surveys

机构

  • 320 篇 beijing key labo...
  • 315 篇 gaoling school o...
  • 95 篇 school of inform...
  • 24 篇 tsinghua univers...
  • 21 篇 gaoling school o...
  • 21 篇 beijing academy ...
  • 21 篇 gaoling school o...
  • 20 篇 beijing key labo...
  • 17 篇 gaoling school o...
  • 15 篇 university of ch...
  • 14 篇 alibaba group
  • 13 篇 school of comput...
  • 13 篇 school of artifi...
  • 13 篇 diro université ...
  • 12 篇 department of co...
  • 11 篇 institute of inf...
  • 11 篇 dept. of comp. s...
  • 10 篇 miit key laborat...
  • 10 篇 dept. of comp. s...
  • 9 篇 singapore manage...

作者

  • 142 篇 wen ji-rong
  • 103 篇 zhao wayne xin
  • 34 篇 zhou kun
  • 31 篇 li chongxuan
  • 30 篇 huang wenbing
  • 30 篇 su bing
  • 27 篇 lu zhiwu
  • 25 篇 xu hongteng
  • 25 篇 lin yankai
  • 25 篇 chen xu
  • 21 篇 liu yang
  • 19 篇 li junyi
  • 18 篇 zhu jun
  • 18 篇 tang tianyi
  • 15 篇 zhou jie
  • 15 篇 wenbing huang
  • 15 篇 yong liu
  • 15 篇 hou yupeng
  • 15 篇 liu yong
  • 14 篇 bao fan

语言

  • 485 篇 英文
  • 61 篇 其他
  • 3 篇 中文
  • 1 篇 德文
  • 1 篇 法文
检索条件"机构=Key Laboratory of Data Intelligence and Management"
549 条 记 录,以下是1-10 订阅
排序:
LLMs as Zero-shot Graph Learners: Alignment of GNN Representations with LLM Token Embeddings  38
LLMs as Zero-shot Graph Learners: Alignment of GNN Represent...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Wang, Duo Zuo, Yuan Li, Fengzhi Wu, Junjie MIIT Key Laboratory of Data Intelligence and Management Beihang University China
Zero-shot graph machine learning, especially with graph neural networks (GNNs), has garnered significant interest due to the challenge of scarce labeled data. While methods like self-supervised learning and graph prom...
来源: 评论
A general tail item representation enhancement framework for sequential recommendation
收藏 引用
Frontiers of Computer Science 2024年 第6期18卷 137-148页
作者: Mingyue CHENG Qi LIU Wenyu ZHANG Zhiding LIU Hongke ZHAO Enhong CHEN Anhui Province Key Laboratory of Big Data Analysis and Application University of Science and Technology of China&State Key Laboratory of Cognitive IntelligenceHefei 230026China College of Management and Economics Tianjin UniversityTianjin 300072China
Recently advancements in deep learning models have significantly facilitated the development of sequential recommender systems(SRS).However,the current deep model structures are limited in their ability to learn high-... 详细信息
来源: 评论
ControlVideo: conditional control for one-shot text-driven video editing and beyond
收藏 引用
Science China(Information Sciences) 2025年 第3期68卷 150-162页
作者: Min ZHAO Rongzhen WANG Fan BAO Chongxuan LI Jun ZHU Department of Computer Science and Technology Institute for AI Tsinghua-Bosch Joint ML CenterTsinghua Laboratory of Brain and Intelligence Lab Tsinghua University ShengShu Technology Gaoling School of Artificial Intelligence Renmin University of China Beijing Key Laboratory of Big Data Management and Analysis Methods Pazhou Laboratory (Huangpu)
This paper presents ControlVideo for text-driven video editing — generating a video that aligns with a given text while preserving the structure of the source video. Building on a pre-trained text-to-image diffusion ... 详细信息
来源: 评论
Bridging The Gap between Low-rank and Orthogonal Adaptation via Householder Reflection Adaptation  38
Bridging The Gap between Low-rank and Orthogonal Adaptation ...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Yuan, Shen Liu, Haotian Xu, Hongteng Gaoling School of Artificial Intelligence Renmin University of China China Beijing Key Laboratory of Big Data Management and Analysis Methods China
While following different technical routes, both low-rank and orthogonal adaptation techniques can efficiently adapt large-scale pre-training models in specific tasks or domains based on a small piece of trainable par...
来源: 评论
Concentration Inequalities for General Functions of Heavy-Tailed Random Variables  41
Concentration Inequalities for General Functions of Heavy-Ta...
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Li, Shaojie Liu, Yong Gaoling School of Artificial Intelligence Renmin University of China Beijing China Beijing Key Laboratory of Big Data Management and Analysis Methods Beijing China
Concentration inequalities play an essential role in the study of machine learning and high dimensional statistics. In this paper, we obtain unbounded analogues of the popular bounded difference inequality for functio... 详细信息
来源: 评论
MMPareto: Boosting Multimodal Learning with Innocent Unimodal Assistance  41
MMPareto: Boosting Multimodal Learning with Innocent Unimoda...
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Wei, Yake Hu, Di Gaoling School of Artificial Intelligence Renmin University of China Beijing China Beijing Key Laboratory of Big Data Management and Analysis Methods Beijing China
Multimodal learning methods with targeted unimodal learning objectives have exhibited their superior efficacy in alleviating the imbalanced multimodal learning problem. However, in this paper, we identify the previous... 详细信息
来源: 评论
Algorithmic Stability Unleashed: Generalization Bounds with Unbounded Losses  41
Algorithmic Stability Unleashed: Generalization Bounds with ...
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Li, Shaojie Zhu, Bowei Liu, Yong Gaoling School of Artificial Intelligence Renmin University of China Beijing China Beijing Key Laboratory of Big Data Management and Analysis Methods Beijing China
One of the central problems of statistical learning theory is quantifying the generalization ability of learning algorithms within a probabilistic framework. Algorithmic stability is a powerful tool for deriving gener...
来源: 评论
SRAP-Agent: Simulating and Optimizing Scarce Resource Allocation Policy with LLM-based Agent
SRAP-Agent: Simulating and Optimizing Scarce Resource Alloca...
收藏 引用
2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024
作者: Ji, Jiarui Li, Yang Liu, Hongtao Du, Zhicheng Wei, Zhewei Shen, Weiran Qi, Qi Lin, Yankai Gaoling School of Artificial Intelligence Renmin University of China Beijing China Beijing Key Laboratory of Big Data Management and Analysis Methods Beijing China
Public scarce resource allocation plays a crucial role in economics as it directly influences the efficiency and equity in society. Traditional studies including theoretical model-based, empirical study-based and simu... 详细信息
来源: 评论
AuriSRec: Adversarial User Intention Learning in Sequential Recommendation
AuriSRec: Adversarial User Intention Learning in Sequential ...
收藏 引用
2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024
作者: Zhang, Junjie Xie, RuoBing Sun, Wenqi Lin, Leyu Zhao, Wayne Xin Wen, Ji-Rong Gaoling School of Artificial Intelligence Renmin University of China China Beijing Key Laboratory of Big Data Management and Analysis Methods China Tencent China
With recommender systems broadly deployed in various online platforms, many efforts have been devoted to learning user preferences and building effective sequential recommenders. However, existing work mainly focuses ... 详细信息
来源: 评论
Perfect Alignment May be Poisonous to Graph Contrastive Learning  41
Perfect Alignment May be Poisonous to Graph Contrastive Lear...
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Liu, Jingyu Tang, Huayi Liu, Yong Gaoling School of Artificial Intelligence Renmin University of China Beijing China Beijing Key Laboratory of Big Data Management and Analysis Methods Beijing China
Graph Contrastive Learning (GCL) aims to learn node representations by aligning positive pairs and separating negative ones. However, few of researchers have focused on the inner law behind specific augmentations used... 详细信息
来源: 评论