咨询与建议

限定检索结果

文献类型

  • 3,483 篇 期刊文献
  • 3,238 篇 会议
  • 4 册 图书

馆藏范围

  • 6,725 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 4,474 篇 工学
    • 3,129 篇 计算机科学与技术...
    • 2,632 篇 软件工程
    • 1,030 篇 信息与通信工程
    • 606 篇 电气工程
    • 586 篇 生物工程
    • 516 篇 控制科学与工程
    • 404 篇 电子科学与技术(可...
    • 386 篇 生物医学工程(可授...
    • 381 篇 光学工程
    • 331 篇 机械工程
    • 270 篇 化学工程与技术
    • 167 篇 交通运输工程
    • 165 篇 仪器科学与技术
    • 150 篇 材料科学与工程(可...
    • 144 篇 动力工程及工程热...
    • 118 篇 网络空间安全
    • 115 篇 建筑学
  • 2,671 篇 理学
    • 1,469 篇 数学
    • 674 篇 物理学
    • 656 篇 生物学
    • 450 篇 统计学(可授理学、...
    • 290 篇 化学
    • 202 篇 系统科学
  • 1,217 篇 管理学
    • 671 篇 管理科学与工程(可...
    • 592 篇 图书情报与档案管...
    • 247 篇 工商管理
  • 317 篇 医学
    • 268 篇 临床医学
    • 228 篇 基础医学(可授医学...
    • 158 篇 药学(可授医学、理...
  • 179 篇 法学
    • 144 篇 社会学
  • 92 篇 经济学
  • 84 篇 农学
  • 55 篇 教育学
  • 27 篇 文学
  • 10 篇 军事学
  • 8 篇 艺术学
  • 4 篇 哲学

主题

  • 259 篇 feature extracti...
  • 217 篇 semantics
  • 176 篇 training
  • 158 篇 deep learning
  • 126 篇 computational mo...
  • 108 篇 accuracy
  • 102 篇 machine learning
  • 91 篇 convolution
  • 91 篇 predictive model...
  • 89 篇 data models
  • 80 篇 neural networks
  • 78 篇 image segmentati...
  • 78 篇 optimization
  • 75 篇 data mining
  • 73 篇 contrastive lear...
  • 73 篇 visualization
  • 70 篇 graph neural net...
  • 68 篇 federated learni...
  • 67 篇 object detection
  • 66 篇 task analysis

机构

  • 223 篇 university of ch...
  • 175 篇 key laboratory o...
  • 134 篇 school of inform...
  • 133 篇 shandong provinc...
  • 93 篇 school of data a...
  • 88 篇 peng cheng labor...
  • 74 篇 college of compu...
  • 73 篇 shandong provinc...
  • 69 篇 key laboratory o...
  • 67 篇 shandong provinc...
  • 64 篇 school of comput...
  • 63 篇 cas key laborato...
  • 61 篇 school of comput...
  • 58 篇 college of compu...
  • 55 篇 college of mathe...
  • 54 篇 beijing advanced...
  • 52 篇 school of comput...
  • 49 篇 school of comput...
  • 46 篇 shandong enginee...
  • 45 篇 nanyang technolo...

作者

  • 88 篇 cheng xueqi
  • 82 篇 niyato dusit
  • 55 篇 huang qingming
  • 45 篇 guo jiafeng
  • 40 篇 zhao hai
  • 35 篇 zheng wei-shi
  • 34 篇 feng zhiquan
  • 33 篇 wang guoyin
  • 31 篇 yang bo
  • 31 篇 liu yang
  • 29 篇 shen huawei
  • 28 篇 lu bao-liang
  • 28 篇 jin xiaolong
  • 28 篇 xu xiaolong
  • 27 篇 zhang lei
  • 27 篇 jiang kai
  • 27 篇 qiang zhang
  • 26 篇 li di
  • 25 篇 yang yang
  • 25 篇 chen yanping

语言

  • 6,252 篇 英文
  • 377 篇 其他
  • 117 篇 中文
  • 2 篇 德文
  • 2 篇 法文
  • 2 篇 葡萄牙文
  • 1 篇 荷兰文
检索条件"机构=Key Laboratory of Data Science and Intelligent Computing"
6725 条 记 录,以下是121-130 订阅
排序:
GBFRS: Robust Fuzzy Rough Sets via Granular-ball computing
arXiv
收藏 引用
arXiv 2025年
作者: Xia, Shuyin Lian, Xiaoyu Sang, Binbin Wang, Guoyin Gao, Xinbo Chongqing Key Laboratory of Computational Intelligence Key Laboratory of Big Data Intelligent Computing Key Laboratory of Cyberspace Big Data Intelligent Security Ministry of Education Chongqing University of Posts and Telecommunications Chongqing400065 China College of Computer and Information Science the National Center for Applied Mathematics in Chongqing Chongqing Normal University Chongqing401331 China
Fuzzy rough set theory is effective for processing datasets with complex attributes, supported by a solid mathematical foundation and closely linked to kernel methods in machine learning. Attribute reduction algorithm... 详细信息
来源: 评论
Binary-Encoding-Based Quantized Kalman Filter: An Approximate MMSE Approach
收藏 引用
IEEE Transactions on Automatic Control 2025年 第5期70卷 3181-3196页
作者: Liu, Qinyuan Nie, Yao Wang, Zidong Dong, Hongli Jiang, Changjun Tongji University School of Computer Science and Technology Shanghai201804 China Tongji University Key Laboratory of Embedded System and Service Computing Ministry of Education Shanghai201804 China Tongji University Shanghai Artificial Intelligence Laboratory Shanghai201804 China Brunel University London Department of Computer Science UxbridgeUB8 3PH United Kingdom Northeast Petroleum University Artificial Intelligence Energy Research Institute Daqing163318 China Northeast Petroleum University Heilongjiang Provincial Key Laboratory of Networking and Intelligent Control Daqing163318 China
In this article, the Kalman filter design problem is investigated for linear discrete-time systems under binary encoding schemes. Under such a scheme, the local information is quantized into a bit string by the remote... 详细信息
来源: 评论
MSMAE-Net: multi-semantic and multi-attention enhanced network for image forgery localization
收藏 引用
Signal, Image and Video Processing 2025年 第7期19卷 1-11页
作者: Liao, Jianjun Su, Lichao Lu, Menghan Engineering Research Center of Big Data Intelligence Ministry of Education Fuzhou China Fujian Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou China
The popularization of modern digital image technology has brought convenience to us, but it also poses many risks. The advancement of image editing software allows anyone to modify image content effortlessly. If these...
来源: 评论
Energy-Aware Task Offloading for Rotatable STAR-RIS-Enhanced Mobile Edge computing Systems
arXiv
收藏 引用
arXiv 2025年
作者: Yang, Dongdong Li, Bin Niyato, Dusit School of Computer Science Nanjing University of Information Science and Technology Nanjing210044 China Huzhou Key Laboratory of Urban Multidimensional Perception and Intelligent Computing Huzhou313000 China College of Computing and Data Science Nanyang Technological University Singapore
Simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) can expand the coverage of mobile edge computing (MEC) services by reflecting and transmitting signals simultaneously, enabling ... 详细信息
来源: 评论
Federated Hybrid-Supervised Learning for Universal Medical Image Segmentation
Federated Hybrid-Supervised Learning for Universal Medical I...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Zheng, Shenhai Wen, Sian Li, Congyu Chen, Qing Li, Laquan College of Computer Science and Technology Chongqing University of Posts and Telecommunications Chongqing China Key Laboratory of Cyberspace Big Data Intelligent Security Ministry of Education Chongqing China School of Science Chongqing University of Posts and Telecommunications Chongqing China
Federated Learning (FL) is an advanced technology that tackles the challenge of blocked data arising from privacy concerns, enabling the training of deep learning models without the need for data sharing. However, FL ... 详细信息
来源: 评论
Learned distributed image compression with decoder side information
收藏 引用
Digital Communications and Networks 2025年 第2期11卷 349-358页
作者: Yin, Yankai Sun, Zhe Ruan, Peiying Li, Ruidong Duan, Feng Tianjin Key Laboratory of Interventional Brain-Computer Interface and Intelligent Rehabilitation Nankai University Tianjin300350 China Institute of Natural Sciences Kanazawa University Ishikawa9201164 Japan Faculty of Health Data Science and Graduate School of Medicine Juntendo University Chiba2790013 Japan NVIDIA AI Technology Center NVIDIA Japan Tokyo1070052 Japan
With the rapid development of digital communication and the widespread use of the Internet of Things, multi-view image compression has attracted increasing attention as a fundamental technology for image data communic... 详细信息
来源: 评论
HybridFL: Hybrid Approach Toward Privacy-Preserving Federated Learning  6th
HybridFL: Hybrid Approach Toward Privacy-Preserving Federate...
收藏 引用
6th International Conference on Security and Privacy in New computing Environments, SPNCE 2023
作者: Ali, Sheraz Mamoon, Saqib Usman, Areeba Abidin, Zain ul Zhao, Chuan School of Information Science and Engineering University of Jinan Jinan250022 China School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China University of Sargodha Sargodha Pakistan Shandong Provincial Key Laboratory of Network-Based Intelligent Computing University of Jinan Jinan250022 China Shandong Provincial Key Laboratory of Software Engineering University of Jinan Jinan250022 China
In this study, we introduce a novel Hybrid Federated Learning (HybridFL) approach aimed at enhancing privacy and accuracy in collaborative machine learning scenarios. Our methodology integrates Differential Privacy (D... 详细信息
来源: 评论
A contrastive learning framework of graph reconstruction and hypergraph learning for key node identification
收藏 引用
Chaos, Solitons and Fractals 2025年 197卷
作者: Huang, Xu-Dong Zhang, Xian-Jie Zhang, Hai-Feng Data Intelligence Lab Research Center For Data To Cyberspace School of Cyber Science and Technology University of Science and Technology of China Hefei Anhui230026 China The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education School of Mathematical Science Anhui University Hefei Anhui230601 China
With the emergence of complex networks in various domains, the key node identification has become one of the critical issues that needs to be studied. Traditional index methods typically focus on single structural inf... 详细信息
来源: 评论
LeapGNN: accelerating distributed GNN training leveraging feature-centric model migration  25
LeapGNN: accelerating distributed GNN training leveraging fe...
收藏 引用
Proceedings of the 23rd USENIX Conference on File and Storage Technologies
作者: Weijian Chen Shuibing He Haoyang Qu Xuechen Zhang The State Key Laboratory of Blockchain and Data Security Zhejiang University and Zhejiang Lab and Hangzhou High-Tech Zone (Binjiang) Institute of Blockchain and Data Security and Zhejiang Key Laboratory of Big Data Intelligent Computing Washington State University Vancouver
Distributed training of graph neural networks (GNNs) has become a crucial technique for processing large graphs. Prevalent GNN frameworks are model-centric, necessitating the transfer of massive graph vertex features ...
来源: 评论
Towards Label-Only Membership Inference Attack against Pre-trained Large Language Models
arXiv
收藏 引用
arXiv 2025年
作者: He, Yu Li, Boheng Liu, Liu Ba, Zhongjie Dong, Wei Li, Yiming Qin, Zhan Ren, Kui Chen, Chun The State Key Laboratory of Blockchain and Data Security Zhejiang University China College of Computing and Data Science Nanyang Technological University Singapore
Membership Inference Attacks (MIAs) aim to predict whether a data sample belongs to the model’s training set or not. Although prior research has extensively explored MIAs in Large Language Models (LLMs), they typical... 详细信息
来源: 评论