咨询与建议

限定检索结果

文献类型

  • 3,609 篇 期刊文献
  • 3,415 篇 会议
  • 4 册 图书

馆藏范围

  • 7,028 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 4,628 篇 工学
    • 3,259 篇 计算机科学与技术...
    • 2,691 篇 软件工程
    • 1,071 篇 信息与通信工程
    • 608 篇 电气工程
    • 592 篇 生物工程
    • 569 篇 控制科学与工程
    • 432 篇 电子科学与技术(可...
    • 388 篇 光学工程
    • 388 篇 生物医学工程(可授...
    • 332 篇 机械工程
    • 271 篇 化学工程与技术
    • 172 篇 仪器科学与技术
    • 170 篇 交通运输工程
    • 147 篇 动力工程及工程热...
    • 146 篇 材料科学与工程(可...
    • 126 篇 建筑学
    • 125 篇 网络空间安全
  • 2,733 篇 理学
    • 1,502 篇 数学
    • 694 篇 物理学
    • 671 篇 生物学
    • 463 篇 统计学(可授理学、...
    • 298 篇 化学
    • 202 篇 系统科学
  • 1,234 篇 管理学
    • 684 篇 管理科学与工程(可...
    • 601 篇 图书情报与档案管...
    • 245 篇 工商管理
  • 344 篇 医学
    • 291 篇 临床医学
    • 238 篇 基础医学(可授医学...
    • 159 篇 药学(可授医学、理...
  • 186 篇 法学
    • 151 篇 社会学
  • 88 篇 经济学
  • 87 篇 农学
  • 69 篇 教育学
  • 27 篇 文学
  • 10 篇 军事学
  • 10 篇 艺术学
  • 4 篇 哲学
  • 1 篇 历史学

主题

  • 272 篇 feature extracti...
  • 224 篇 semantics
  • 181 篇 training
  • 169 篇 deep learning
  • 136 篇 computational mo...
  • 123 篇 accuracy
  • 108 篇 machine learning
  • 93 篇 data models
  • 92 篇 convolution
  • 86 篇 predictive model...
  • 85 篇 optimization
  • 83 篇 federated learni...
  • 82 篇 image segmentati...
  • 81 篇 contrastive lear...
  • 79 篇 neural networks
  • 78 篇 data mining
  • 74 篇 visualization
  • 72 篇 object detection
  • 71 篇 reinforcement le...
  • 71 篇 graph neural net...

机构

  • 238 篇 university of ch...
  • 181 篇 key laboratory o...
  • 133 篇 shandong provinc...
  • 128 篇 school of inform...
  • 96 篇 college of compu...
  • 89 篇 peng cheng labor...
  • 89 篇 school of data a...
  • 73 篇 shandong provinc...
  • 70 篇 school of comput...
  • 69 篇 key laboratory o...
  • 68 篇 school of comput...
  • 64 篇 cas key laborato...
  • 56 篇 shandong provinc...
  • 54 篇 beijing advanced...
  • 52 篇 shandong enginee...
  • 52 篇 school of comput...
  • 52 篇 college of mathe...
  • 52 篇 college of compu...
  • 49 篇 school of comput...
  • 44 篇 school of comput...

作者

  • 91 篇 niyato dusit
  • 91 篇 cheng xueqi
  • 60 篇 huang qingming
  • 46 篇 guo jiafeng
  • 41 篇 zhao hai
  • 35 篇 zheng wei-shi
  • 34 篇 wang guoyin
  • 33 篇 liu yang
  • 33 篇 feng zhiquan
  • 31 篇 yang bo
  • 29 篇 jin xiaolong
  • 29 篇 yang zhiyong
  • 29 篇 xu xiaolong
  • 28 篇 shen huawei
  • 28 篇 lu bao-liang
  • 28 篇 yang yang
  • 28 篇 wang wei
  • 27 篇 zhang lei
  • 26 篇 jiang kai
  • 26 篇 li di

语言

  • 5,444 篇 英文
  • 1,485 篇 其他
  • 145 篇 中文
  • 3 篇 葡萄牙文
  • 1 篇 荷兰文
检索条件"机构=Key Laboratory of Data Science and Intelligent Computing"
7028 条 记 录,以下是681-690 订阅
排序:
A Weighted Ensemble Causal Discovery Method for Effective Connectivity Estimation  9
A Weighted Ensemble Causal Discovery Method for Effective Co...
收藏 引用
9th IEEE Smart World Congress, SWC 2023
作者: Zhang, Qiqi Zhang, Yingwei Ding, Yanhui Chen, Yiqiang Song, Shuchao Wu, Shuang Shandong Normal University School of Information Science and Engineering Jinan China Shandong Academy of Intelligent Computing Technology Jinan China Chinese Academy of Sciences Institute of Computing Technology Beijing China Beijing Key Laboratory of Mobile Computing and Pervasive Device Beijing China
Exploring and explaining the effective connectivity (EC) between brain regions can help us understand the mechanisms behind neurodegenerative diseases such as Alzheimer's disease, thus helping us to diagnose patie... 详细信息
来源: 评论
Few-Shot Object Detection Based On Label Constrained data Augmentation
Few-Shot Object Detection Based On Label Constrained Data Au...
收藏 引用
International Conference on Big data and Information Analytics (BigDIA)
作者: Yan Shi Guoyin Wang Qun Liu Key Laboratory of Big Data Intelligent Computing Chongqing University of Posts and Telecommunications Chongqing China
The majority of object detection methods typically depend on a significant quantity of annotated data, while few-shot object detection (FSOD) endeavors to identify novel classes of objects using a limited number of tr...
来源: 评论
LAGIM:A Label-Aware Graph Interaction Model for Joint Multiple Intent Detection and Slot Filling
LAGIM:A Label-Aware Graph Interaction Model for Joint Multip...
收藏 引用
第35届中国控制与决策会议
作者: Penghua Li Ziheng Huang Key Laboratory of Intelligent Computing for Big Data College of Automation Chongqing University of Posts and Telecommunications
Multi-intent spoken language understanding joint model can handle multiple intents in an utterance and is closer to complicated real-world scenarios,attracting increasing ***,existing research(1) usually focuses on id...
来源: 评论
ProtCLIP: Function-Informed Protein Multi-Modal Learning  39
ProtCLIP: Function-Informed Protein Multi-Modal Learning
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Zhou, Hanjing Yin, Mingze Wu, Wei Li, Mingyang Fu, Kun Chen, Jintai Wu, Jian Wang, Zheng College of Computer Science and Technology Zhejiang University China State Key Laboratory of Transvascular Implantation Devices of The Second Affiliated Hospital Zhejiang University China Alibaba Cloud Computing China School of Artificial Intelligence and Data Science University of Science and Technology of China China AI Thrust Information Hub HKUST Guangzhou China Zhejiang Key Laboratory of Medical Imaging Artificial Intelligence China
Multi-modality pre-training paradigm that aligns protein sequences and biological descriptions has learned general protein representations and achieved promising performance in various downstream applications. However... 详细信息
来源: 评论
LeapGNN: accelerating distributed GNN training leveraging feature-centric model migration  25
LeapGNN: accelerating distributed GNN training leveraging fe...
收藏 引用
Proceedings of the 23rd USENIX Conference on File and Storage Technologies
作者: Weijian Chen Shuibing He Haoyang Qu Xuechen Zhang The State Key Laboratory of Blockchain and Data Security Zhejiang University and Zhejiang Lab and Hangzhou High-Tech Zone (Binjiang) Institute of Blockchain and Data Security and Zhejiang Key Laboratory of Big Data Intelligent Computing Washington State University Vancouver
Distributed training of graph neural networks (GNNs) has become a crucial technique for processing large graphs. Prevalent GNN frameworks are model-centric, necessitating the transfer of massive graph vertex features ...
来源: 评论
State of Health Estimation of Lithium-ion Battery Based On Improved Transfer Learning
State of Health Estimation of Lithium-ion Battery Based On I...
收藏 引用
第35届中国控制与决策会议
作者: Penghua Li Kangheng Shan Key Laboratory of Intelligent Computing for Big Data College of Automation Chongqing University of Posts and Telecommunications
Many existing methods of forecasting the stateof-health(SOH) assume that training and testing data follow the same *** model based on dataset under one working condition may be ineffective for the dataset under anothe... 详细信息
来源: 评论
Multi-Granular Differential Evolution Algorithm for Multi-Agent Task Allocation
Multi-Granular Differential Evolution Algorithm for Multi-Ag...
收藏 引用
International Conference on Big data and Information Analytics (BigDIA)
作者: Peng Gao Qun Liu Haihuan Jiang Key Laboratory of Big Data Intelligent Computing Chongqing University of Posts and Telecommunications Chongqing China
The multi-agent task allocation presents a fundamental challenge in the field of multi-agent systems, especially in uncertain environments. Although extensive research has been conducted on the multi-agent task alloca...
来源: 评论
CQUPT-FL: Cross-Domain Sharing and Security Awareness and Early Warning Platform of Health science Big data
CQUPT-FL: Cross-Domain Sharing and Security Awareness and Ea...
收藏 引用
Medical Artificial Intelligence (MedAI), IEEE International Conference on
作者: Yunpeng Xiao Qunqing Zhang Wanjing Zhao Xufeng Li Jinhua Peng Haonan Mo Haipeng Zhu Fei Tang Key Laboratory of Big Data Intelligent Computing Chongqing University of Posts and Telecommunications Chongqing China
Federated learning (FL) is a rapidly growing research area in machine learning, but it is problematic. It has been questioned whether or not existing FL libraries are practical in the area of medical privacy. To addre...
来源: 评论
Generalizing STNU to Model Non-functional Constraints for Business Processes
Generalizing STNU to Model Non-functional Constraints for Bu...
收藏 引用
2022 CCF International Conference on Service science, CCF ICSS 2022
作者: Peng, Jun Zhu, Jingwei Zhang, Liang Fudan University Shanghai Key Laboratory of Data Science School of Computer Science China Shanghai Institute of Intelligent Electronics & Systems Shanghai China
Due to its ease of use, the notion of Simple Temporal Networks with Uncertainty (STNU) has been successfully used in verifying temporal constraints of business processes. Considering the universality of non-functional... 详细信息
来源: 评论
EdgeAuth: An intelligent token-based collaborative authentication scheme
EdgeAuth: An intelligent token-based collaborative authentic...
收藏 引用
作者: Jiang, Xutong Dou, Ruihan He, Qiang Zhang, Xuyun Dou, Wanchun State Key Laboratory for Novel Software Technology Nanjing University Nanjing China Faculty of Mathematics University of Waterloo Waterloo Canada Department of Computer Science and Software Engineering Swinburne University of Technology Melbourne Australia Department of Computing Macquarie University Sydney Australia College of Big Data and Intelligent Engineering Southwest Forestry University China
Edge computing is regarded as an extension of cloud computing that brings computing and storage resources to the network edge. For some Industrial Internet of Things (IIoT) applications such as supply-chain supervisio... 详细信息
来源: 评论