咨询与建议

限定检索结果

文献类型

  • 532 篇 期刊文献
  • 490 篇 会议

馆藏范围

  • 1,022 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 660 篇 工学
    • 475 篇 计算机科学与技术...
    • 404 篇 软件工程
    • 183 篇 信息与通信工程
    • 112 篇 电气工程
    • 90 篇 控制科学与工程
    • 74 篇 生物工程
    • 61 篇 电子科学与技术(可...
    • 44 篇 光学工程
    • 43 篇 生物医学工程(可授...
    • 41 篇 机械工程
    • 31 篇 交通运输工程
    • 28 篇 网络空间安全
    • 26 篇 安全科学与工程
    • 23 篇 材料科学与工程(可...
    • 23 篇 化学工程与技术
    • 22 篇 仪器科学与技术
    • 20 篇 动力工程及工程热...
    • 20 篇 建筑学
  • 321 篇 理学
    • 162 篇 数学
    • 87 篇 生物学
    • 78 篇 物理学
    • 57 篇 统计学(可授理学、...
    • 23 篇 化学
    • 23 篇 系统科学
  • 179 篇 管理学
    • 100 篇 管理科学与工程(可...
    • 90 篇 图书情报与档案管...
    • 30 篇 工商管理
  • 37 篇 医学
    • 31 篇 基础医学(可授医学...
    • 31 篇 临床医学
  • 31 篇 法学
    • 21 篇 社会学
  • 14 篇 经济学
  • 10 篇 农学
  • 8 篇 军事学
  • 3 篇 教育学
  • 1 篇 文学

主题

  • 41 篇 feature extracti...
  • 37 篇 semantics
  • 28 篇 training
  • 24 篇 deep learning
  • 23 篇 federated learni...
  • 22 篇 privacy
  • 20 篇 machine learning
  • 18 篇 signal processin...
  • 18 篇 speech processin...
  • 17 篇 optimization
  • 17 篇 computational mo...
  • 17 篇 accuracy
  • 15 篇 graph neural net...
  • 14 篇 contrastive lear...
  • 14 篇 robustness
  • 12 篇 deep neural netw...
  • 12 篇 neural networks
  • 12 篇 forecasting
  • 11 篇 object detection
  • 11 篇 data privacy

机构

  • 58 篇 hubei key labora...
  • 55 篇 school of comput...
  • 47 篇 school of cyber ...
  • 39 篇 jiangsu key labo...
  • 37 篇 jiangsu key labo...
  • 36 篇 school of comput...
  • 33 篇 national enginee...
  • 30 篇 jiangsu key labo...
  • 27 篇 hubei key labora...
  • 27 篇 national enginee...
  • 27 篇 hubei engineerin...
  • 26 篇 huazhong univers...
  • 24 篇 services computi...
  • 24 篇 cluster and grid...
  • 19 篇 school of softwa...
  • 18 篇 school of inform...
  • 17 篇 school of cyber ...
  • 16 篇 jiangsu key labo...
  • 15 篇 university of ch...
  • 15 篇 hubei province k...

作者

  • 36 篇 xu xiaolong
  • 28 篇 jin hai
  • 25 篇 xiaolong xu
  • 20 篇 shen linlin
  • 19 篇 hu shengshan
  • 18 篇 yang yang
  • 18 篇 hai jin
  • 17 篇 huang qingming
  • 17 篇 zhou pan
  • 16 篇 xu qianqian
  • 15 篇 wang guoyin
  • 15 篇 zhang leo yu
  • 14 篇 ai bo
  • 14 篇 li minghui
  • 13 篇 zhang zhe
  • 12 篇 zhou ziqi
  • 11 篇 liu jun
  • 11 篇 yang zhiyong
  • 11 篇 fu chong
  • 11 篇 wang haoyu

语言

  • 935 篇 英文
  • 78 篇 其他
  • 8 篇 中文
检索条件"机构=Key Laboratory of Data and Intelligent System Security"
1022 条 记 录,以下是301-310 订阅
排序:
BSL: Understanding and Improving Softmax Loss for Recommendation  40
BSL: Understanding and Improving Softmax Loss for Recommenda...
收藏 引用
40th IEEE International Conference on data Engineering, ICDE 2024
作者: Wu, Junkang Chen, Jiawei Wu, Jiancan Shi, Wentao Zhang, Jizhi Wang, Xiang University of Science and Technology of China MoE Key Laboratory of Brain-inspired Intelligent Perception and Cognition Hefei China Zhejiang Unversity The State Key Laboratory of Blockchain and Data Security China Institute of Artificial Intelligence Institute of Dataspace Hefei Comprehensive National Science Center. China
Loss functions steer the optimization direction of recommendation models and are critical to model performance, but have received relatively little attention in recent recommendation research. Among various losses, we... 详细信息
来源: 评论
Byzantine-Robust Federated Learning on Non-IID data via Inversing Artificial Gradients
Byzantine-Robust Federated Learning on Non-IID Data via Inve...
收藏 引用
2024 IEEE Global Communications Conference, GLOBECOM 2024
作者: Li, Minyang Tang, Xiangyun Zhang, Tao Liu, Guangyuan Weng, Yu Minzu University of China Key Laboratory of Ethnic Language Intelligent Analysis and Security Governance China Beijing Jiaotong University School of Software Engineering China Nanyang Technological University College of Computing and Data Science Singapore
Federated Learning (FL) is a distributed machine learning framework that enhances privacy by enabling multiple participants to train a global model without sharing their raw data. However, FL still faces the threat po... 详细信息
来源: 评论
Robust Network For Segmenting Roof Planes From Sparse Point Clouds  36
Robust Network For Segmenting Roof Planes From Sparse Point ...
收藏 引用
36th International Conference on Software Engineering and Knowledge Engineering, SEKE 2024
作者: Fu, Hang Zeng, Cheng Key Laboratory of Intelligent Sensing System and Security Hubei University Ministry of Education Wuhan China School of Computer and Information Engineering Hubei University Wuhan China School of Artificial Intelligence Hubei University Wuhan China
The plane is the fundamental characteristic for describing the shape of polyhedral buildings. Roof plane segmentation of airborne LiDAR point clouds is an important step in 3D building model reconstruction. Existing m... 详细信息
来源: 评论
FedCSA: Boosting the Convergence Speed of Federated Unlearning under data Heterogeneity  21
FedCSA: Boosting the Convergence Speed of Federated Unlearni...
收藏 引用
21st IEEE International Symposium on Parallel and Distributed Processing with Applications, 13th IEEE International Conference on Big data and Cloud Computing, 16th IEEE International Conference on Social Computing and Networking and 13th International Conference on Sustainable Computing and Communications, ISPA/BDCloud/SocialCom/SustainCom 2023
作者: Wang, Zhen Alghazzawi, Daniyal M Cheng, Li Liu, Gaoyang Wang, Chen Cheng, Zeng Yang, Yang Hubei University Key Laboratory of Intelligent Sensing System and Security Ministry of Education School of Artificial Intelligence Wuhan China King Abdulaziz University Jeddah Saudi Arabia Huazhong University of Science and Technology Wuhan China
The exponential growth of the Internet and the widespread availability of personal data have raised significant concerns regarding personal privacy and societal security. In response, the 'right to be forgotten... 详细信息
来源: 评论
Design Guidance for Lightweight Object Detection Models  3rd
Design Guidance for Lightweight Object Detection Models
收藏 引用
3rd International Conference on Big data and security, ICBDS 2021
作者: Wang, Rui Wang, Xueli Chen, Yunfang Zhang, Wei School of Computer Science Nanjing University of Posts and Telecommunications Jiangsu Nanjing210023 China Jiangsu Key Laboratory of Big Data Security and Intelligent Processing Nanjing University of Posts and Telecommunications Jiangsu Nanjing210023 China
The lightweight target detection model is deployed in an environment with limited computing power and power consumption, which is widely used in many fields. Most of the current lightweight technologies only focus on ... 详细信息
来源: 评论
Estimating Power Consumption of Containers and Virtual Machines in data Centers
Estimating Power Consumption of Containers and Virtual Machi...
收藏 引用
IEEE International Conference on Cluster Computing
作者: Xusheng Zhang Ziyu Shen Bin Xia Zheng Liu Yun Li Jiangsu Key Laboratory of Big Data Security & Intelligent Processing Nanjing University of Posts and Telecommunications
Virtualization technologies provide solutions of cloud computing. Virtual resource scheduling is a crucial task in data centers, and the power consumption of virtual resources is a critical foundation of virtualizatio... 详细信息
来源: 评论
Disentangling Client Contributions: Improving Federated Learning Accuracy in the Presence of Heterogeneous data  21
Disentangling Client Contributions: Improving Federated Lear...
收藏 引用
21st IEEE International Symposium on Parallel and Distributed Processing with Applications, 13th IEEE International Conference on Big data and Cloud Computing, 16th IEEE International Conference on Social Computing and Networking and 13th International Conference on Sustainable Computing and Communications, ISPA/BDCloud/SocialCom/SustainCom 2023
作者: Liu, Chunming Alghazzawi, Daniyal M Cheng, Li Liu, Gaoyang Wang, Chen Zeng, Cheng Yang, Yang Hubei University Key Laboratory of Intelligent Sensing System and Security Ministry of Education School of Artificial Intelligence Wuhan China King Abdulaziz University Jeddah Saudi Arabia Huazhong University of Science and Technology Wuhan China
Federated Learning (FL) is a promising paradigm that leverages distributed data sources to train machine learning models, thereby offering significant privacy advantages. However, the inherent statistical heterogeneit... 详细信息
来源: 评论
Hash Function Based on Quantum Walks with Two-Step Memory
Hash Function Based on Quantum Walks with Two-Step Memory
收藏 引用
2024 International Conference on Computing, Machine Learning and data Science, CMLDS 2024
作者: Zhou, Qing Lu, Songfeng Yang, Hao Hubei Key Laboratory of Distributed System Security Hubei Engineering Research Center on Big Data Security School of Cyber Science and Engineering Huazhong University of Science and Technology Hubei Wuhan China Shenzhen Huazhong University of Science and Technology Research Institute Guangdong Shenzhen China
We propose a new quantum-walk-based hash function QHF2M by combining two types of quantum walks with two-step memory and numerically test its statistical performance. The test result shows that QHF2M is on a par with ... 详细信息
来源: 评论
GBCT: An Efficient and Adaptive Granular-Ball Clustering Algorithm for Complex data
arXiv
收藏 引用
arXiv 2024年
作者: Xia, Shuyin Shi, Bolun Wang, Yifan Xie, Jiang Wang, Guoyin Gao, Xinbo Chongqing Key Laboratory of Computational Intelligence The Key Laboratory of Cyberspace Big Data Intelligent Security Ministry of Education The Key Laboratory of Big Data Intelligent Computing Chongqing University of Posts and Telecommunications Chongqing400065 China
Traditional clustering algorithms often focus on the most fine-grained information and achieve clustering by calculating the distance between each pair of data points or implementing other calculations based on points... 详细信息
来源: 评论
Granular-ball Representation Learning for Deep CNN on Learning with Label Noise
arXiv
收藏 引用
arXiv 2024年
作者: Dai, Dawei Zhu, Hao Xia, Shuyin Wang, Guoyin Chongqing Key Laboratory of Computational Intelligence Key Laboratory of Big Data Intelligent Computing Key Laboratory of Cyberspace Big Data Intelligent Security Ministry of Education Chongqing University of Posts and Telecommunications Chongqing400065 China
In actual scenarios, whether manually or automatically annotated, label noise is inevitably generated in the training data, which can affect the effectiveness of deep CNN models. The popular solutions require data cle... 详细信息
来源: 评论