咨询与建议

限定检索结果

文献类型

  • 533 篇 期刊文献
  • 496 篇 会议

馆藏范围

  • 1,029 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 658 篇 工学
    • 474 篇 计算机科学与技术...
    • 401 篇 软件工程
    • 183 篇 信息与通信工程
    • 109 篇 电气工程
    • 89 篇 控制科学与工程
    • 74 篇 生物工程
    • 60 篇 电子科学与技术(可...
    • 44 篇 光学工程
    • 43 篇 生物医学工程(可授...
    • 40 篇 机械工程
    • 31 篇 交通运输工程
    • 28 篇 网络空间安全
    • 25 篇 安全科学与工程
    • 23 篇 化学工程与技术
    • 22 篇 材料科学与工程(可...
    • 21 篇 仪器科学与技术
    • 20 篇 动力工程及工程热...
    • 20 篇 建筑学
  • 320 篇 理学
    • 159 篇 数学
    • 87 篇 生物学
    • 79 篇 物理学
    • 55 篇 统计学(可授理学、...
    • 23 篇 化学
    • 23 篇 系统科学
  • 179 篇 管理学
    • 100 篇 管理科学与工程(可...
    • 90 篇 图书情报与档案管...
    • 30 篇 工商管理
  • 37 篇 医学
    • 31 篇 基础医学(可授医学...
    • 31 篇 临床医学
  • 29 篇 法学
    • 21 篇 社会学
  • 14 篇 经济学
  • 10 篇 农学
  • 8 篇 军事学
  • 3 篇 教育学
  • 1 篇 文学

主题

  • 41 篇 feature extracti...
  • 37 篇 semantics
  • 28 篇 training
  • 24 篇 deep learning
  • 22 篇 federated learni...
  • 22 篇 privacy
  • 20 篇 machine learning
  • 18 篇 signal processin...
  • 18 篇 speech processin...
  • 18 篇 optimization
  • 17 篇 computational mo...
  • 17 篇 accuracy
  • 15 篇 graph neural net...
  • 14 篇 contrastive lear...
  • 14 篇 robustness
  • 12 篇 data privacy
  • 12 篇 deep neural netw...
  • 12 篇 neural networks
  • 12 篇 forecasting
  • 11 篇 object detection

机构

  • 58 篇 hubei key labora...
  • 55 篇 school of comput...
  • 48 篇 school of cyber ...
  • 39 篇 jiangsu key labo...
  • 37 篇 jiangsu key labo...
  • 36 篇 school of comput...
  • 34 篇 national enginee...
  • 30 篇 jiangsu key labo...
  • 27 篇 hubei key labora...
  • 27 篇 national enginee...
  • 27 篇 hubei engineerin...
  • 26 篇 huazhong univers...
  • 24 篇 services computi...
  • 24 篇 cluster and grid...
  • 21 篇 school of softwa...
  • 19 篇 school of inform...
  • 17 篇 school of cyber ...
  • 16 篇 jiangsu key labo...
  • 15 篇 university of ch...
  • 15 篇 hubei province k...

作者

  • 36 篇 xu xiaolong
  • 28 篇 jin hai
  • 25 篇 xiaolong xu
  • 20 篇 shen linlin
  • 20 篇 hai jin
  • 19 篇 hu shengshan
  • 18 篇 yang yang
  • 17 篇 huang qingming
  • 17 篇 zhou pan
  • 16 篇 xu qianqian
  • 15 篇 wang guoyin
  • 15 篇 zhang leo yu
  • 14 篇 ai bo
  • 14 篇 li minghui
  • 13 篇 zhang zhe
  • 12 篇 zhou ziqi
  • 12 篇 feng gao
  • 11 篇 liu jun
  • 11 篇 yang zhiyong
  • 11 篇 fu chong

语言

  • 945 篇 英文
  • 75 篇 其他
  • 8 篇 中文
检索条件"机构=Key Laboratory of Data and Intelligent System Security"
1029 条 记 录,以下是591-600 订阅
排序:
Predefined Time Neurodynamic Approach to Mixed Variational Inequality Problems
Predefined Time Neurodynamic Approach to Mixed Variational I...
收藏 引用
International Conference on Electronic Engineering and Informatics (EEI)
作者: Jinlan Zheng Ruiqi Zhou Xingxing Ju Xin Han Dianwei Wang Key Laboratories of Sensing and Application of Intelligent Optoelectronic System in Sichuan Provincial Universities Sichuan University of Arts and Science Dazhou China College of Electronics and Information Engineering Sichuan University Chengdu China College of Mathematics Sichuan University of Arts and Science Dazhou Sichuan China Shaanxi Key Laboratory of Information Communication Network and Security Xi'an University of Posts and Telecommunications Xi'an Shaanxi China
In order to address the mixed variational inequalities, this study proposes a proximal neurodynamic technique with predefined-time stability. Our approach incorporates adjustable parameters, differentiating it from tr... 详细信息
来源: 评论
The Power of Bamboo: On the Post-Compromise security for Searchable Symmetric Encryption
arXiv
收藏 引用
arXiv 2024年
作者: Chen, Tianyang Xu, Peng Picek, Stjepan Luo, Bo Susilo, Willy Jin, Hai Liang, Kaitai National Engineering Research Center for Big Data Technology and System Services Computing Technology and System Lab China Hubei Key Laboratory of Distributed System Security Hubei Engineering Research Center on Big Data Security School of Cyber Science and Engineering China Cluster and Grid Computing Lab School of Computer Science and Technology China Huazhong University of Science and Technology Wuhan430074 China Digital Security Group Radboud University Nijmegen Netherlands Department of EECS Institute of Information Sciences The University of Kansas LawrenceKS United States Institute of Cybersecurity and Cryptology School of Computing and Information Technology University of Wollongong WollongongNSW2522 Australia Faculty of Electrical Engineering Mathematics and Computer Science Delft University of Technology Delft2628 CD Netherlands
Dynamic searchable symmetric encryption (DSSE) enables users to delegate the keyword search over dynamically updated encrypted databases to an honest-but-curious server without losing keyword privacy. This paper studi... 详细信息
来源: 评论
YTCNet: A Real-time Algorithm for Parcel Damage Detection with Rich Features and Attention
YTCNet: A Real-time Algorithm for Parcel Damage Detection wi...
收藏 引用
International Conference on Computer Supported Cooperative Work in Design
作者: Zhi Chen Cuifeng Du Yuyu Zhou Haoxuan Guan Xiujie Huang Zhefu Li Changjiang Liu Xiaotian Zhuang Xingyu Zhu Quanlong Guan Jinan University Guangzhou China Guangdong-Macao Advanced Intelligent Computing Joint Laboratory China Cetc Potevio Science & Technology Co. Ltd Guangzhou China Guangdong Key Laboratory of Data Security and Privacy Preserving China Guangdong Testing Institute of Product Quality Supervision China Beijing JD Zhenshi Information Technology Co. Ltd Beijing China
In this study, we tackle the challenge of parcel damage detection and present YTCNet to improve both accuracy and real-time performance. We enhance the Yolov5 algorithm by integrating C3TR modules into the architectur... 详细信息
来源: 评论
Generative AI-driven Cross-layer Covert Communication: Fundamentals, Framework and Case Study
arXiv
收藏 引用
arXiv 2025年
作者: Liu, Tianhao Liu, Jiqiang Zhang, Tao Wang, Jian Wang, Jiacheng Kang, Jiawen Niyato, Dusit Mao, Shiwen School of Cyberspace Science and Technology Beijing Jiaotong University Beijing100044 China Beijing Key Laboratory of Security and Privacy in Intelligent Transportation Beijing Jiaotong University Beijing100045 China School of Computer Science and Engineering Nanyang Technological University Singapore639798 Singapore School of Automation Guangdong University of Technology Key Laboratory of Intelligent Information Processing and System Integration of IoT Ministry of Education Guangzhou510006 China Guangdong-HongKong-Macao Joint Laboratory for Smart Discrete Manufacturing Guangzhou510006 China Department of Electrical and Computer Engineering Auburn University AuburnAL36849-5201 United States
Ensuring end-to-end cross-layer communication security in military networks by selecting covert schemes between nodes is a key solution for military communication security. With the development of communication techno... 详细信息
来源: 评论
A Triangular Stable Node Network based on Self-supervised Learning for personalized prediction
A Triangular Stable Node Network based on Self-supervised Le...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Qing Liu Qian Gao Jun Fan Zhiqiang Zhang Key Laboratory of Computing Power Network and Information Security Ministry of Education Shandong Computer Science Center (National Supercomputer Center in Jinan) Qilu University of Technology (Shandong Academy of Sciences) Jinan China Shandong Engineering Research Center of Big Data Applied Technology Faculty of Computer Science and Technology Qilu University of Technology (Shandong Academy of Sciences) Jinan China Shandong Provincial Key Laboratory of Industrial Network and Information System Security Shandong Fundamental Research Center for Computer Science Jinan China China Telecom Digital Intelligence Techonology Co Ltd Jinan China
In recent years, research has illuminated the potency of implicit data processing in enhancing user preferences. Nevertheless, barriers remain in breaking through the constraints of implicit information. This study ai... 详细信息
来源: 评论
Hard Sample Matters a Lot in Zero-Shot Quantization
Hard Sample Matters a Lot in Zero-Shot Quantization
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Huantong Li Xiangmiao Wu Fanbing Lv Daihai Liao Thomas H. Li Yonggang Zhang Bo Han Mingkui Tan South China University of Technology Information Technology R&D Innovation Center of Peking University Changsha Hisense Intelligent System Research Institute Co. Ltd School of Electronic and Computer Engineering Peking University Shenzhen Graduate School Shenzhen China Hong Kong Baptist University Key Laboratory of Big Data and Intelligent Robot Ministry of Education PengCheng Laboratory
Zero-shot quantization (ZSQ) is promising for compressing and accelerating deep neural networks when the data for training full-precision models are inaccessible. In ZSQ, network quantization is performed using synthe...
来源: 评论
An autoencoder-like nonnegative matrix co-factorization for improved student cognitive modeling  24
An autoencoder-like nonnegative matrix co-factorization for ...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing systems
作者: Shenbao Yu Yinghui Pan Yifeng Zeng Prashant Doshi Guoquan Liu Kim-Leng Poh Mingwei Lin College of Computer and Cyber Security Fujian Normal University China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University China Department of Computer and Information Sciences Northumbria University UK Intelligent Thought and Action Lab School of Computing University of Georgia Financial Technology Research Institute Fudan University China College of Design and Engineering National University of Singapore Singapore
Student cognitive modeling (SCM) is a fundamental task in intelligent education, with applications ranging from personalized learning to educational resource allocation. By exploiting students' response logs, SCM ...
来源: 评论
Efficient Adaptive Label Refinement for label noise learning
收藏 引用
Neurocomputing 2025年 639卷
作者: Zhang, Wenzhen Cheng, Debo Lu, Guangquan Zhou, Bo Li, Jiaye Zhang, Shichao School of Computer Science and Engineering Guangxi Normal University Guangxi Guilin541004 China Guangxi Key Lab of Multi-Source Information Mining & Security Guangxi Normal University Guangxi Guilin541004 China Key Lab of Education Blockchain and Intelligent Technology Ministry of Education Guangxi Normal University Guangxi Guilin541004 China School of Computer Science and Technology Hainan University Hainan Haikou570228 China Guangxi Collaborative Innovation Center of Modern Sericulture and Silk Hechi University Guangxi Hechi546300 China The State Key Laboratory of Blockchain and Data Security Zhejiang University Zhejiang Hangzhou310027 China
Deep neural networks are highly susceptible to overfitting noisy labels, which leads to degraded performance. Existing methods address this issue by employing complex manually designed strategies, aiming to achieve op... 详细信息
来源: 评论
Minimum Time Extrema Estimation for Large-Scale Radio-Frequency Identification systems
收藏 引用
Journal of Computer Science & Technology 2020年 第5期35卷 1099-1114页
作者: Xiao-Jun Zhu Li-Jie Xu Xiao-Bing Wu Bing Chen College of Computer Science and Technology Nanjing University of Aeronautics and AstronauticsNanjing 211106China Jiangsu Key Laboratory of Dig Data Security and Intelligent Processing Nanjing University of Posts and TelecommunicationsNanjing 210049China Wireless Research Centre University of CanterburyChristchurch 8041New Zealand
We consider the extrema estimation problem in large-scale radio-frequency identification(RFID)systems,where there are thousands of tags and each tag contains a finite *** objective is to design an extrema estimation p... 详细信息
来源: 评论
Dist-PU: Positive-Unlabeled Learning from a Label Distribution Perspective
arXiv
收藏 引用
arXiv 2022年
作者: Zhao, Yunrui Xu, Qianqian Jiang, Yangbangyan Wen, Peisong Huang, Qingming School of Computer Science and Technology University of Chinese Academy of Sciences China Key Laboratory of Intelligent Information Processing Institute of Computing Technology CAS China State Key Laboratory of Information Security Institute of Information Engineering CAS China School of Cyber Security University of Chinese Academy of Sciences China Key Laboratory of Big Data Mining and Knowledge Management University of Chinese Academy of Sciences China
Positive-Unlabeled (PU) learning tries to learn binary classifiers from a few labeled positive examples with many unlabeled ones. Compared with ordinary semi-supervised learning, this task is much more challenging due... 详细信息
来源: 评论