咨询与建议

限定检索结果

文献类型

  • 560 篇 期刊文献
  • 490 篇 会议

馆藏范围

  • 1,050 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 685 篇 工学
    • 491 篇 计算机科学与技术...
    • 414 篇 软件工程
    • 192 篇 信息与通信工程
    • 131 篇 电气工程
    • 94 篇 控制科学与工程
    • 74 篇 生物工程
    • 66 篇 电子科学与技术(可...
    • 47 篇 光学工程
    • 44 篇 机械工程
    • 44 篇 生物医学工程(可授...
    • 34 篇 交通运输工程
    • 32 篇 网络空间安全
    • 28 篇 安全科学与工程
    • 24 篇 材料科学与工程(可...
    • 24 篇 化学工程与技术
    • 23 篇 仪器科学与技术
    • 21 篇 动力工程及工程热...
    • 21 篇 建筑学
  • 332 篇 理学
    • 168 篇 数学
    • 87 篇 生物学
    • 82 篇 物理学
    • 58 篇 统计学(可授理学、...
    • 24 篇 化学
    • 24 篇 系统科学
  • 186 篇 管理学
    • 106 篇 管理科学与工程(可...
    • 92 篇 图书情报与档案管...
    • 33 篇 工商管理
  • 39 篇 医学
    • 32 篇 基础医学(可授医学...
    • 32 篇 临床医学
  • 32 篇 法学
    • 22 篇 社会学
  • 15 篇 经济学
  • 10 篇 农学
  • 8 篇 军事学
  • 4 篇 教育学
  • 1 篇 文学

主题

  • 41 篇 feature extracti...
  • 37 篇 semantics
  • 29 篇 training
  • 27 篇 deep learning
  • 23 篇 federated learni...
  • 22 篇 privacy
  • 20 篇 machine learning
  • 18 篇 signal processin...
  • 18 篇 speech processin...
  • 18 篇 computational mo...
  • 17 篇 optimization
  • 17 篇 accuracy
  • 16 篇 graph neural net...
  • 14 篇 contrastive lear...
  • 14 篇 robustness
  • 13 篇 deep neural netw...
  • 12 篇 data privacy
  • 12 篇 neural networks
  • 12 篇 forecasting
  • 12 篇 data models

机构

  • 58 篇 hubei key labora...
  • 55 篇 school of comput...
  • 47 篇 school of cyber ...
  • 40 篇 jiangsu key labo...
  • 37 篇 jiangsu key labo...
  • 36 篇 school of comput...
  • 33 篇 national enginee...
  • 30 篇 jiangsu key labo...
  • 27 篇 hubei key labora...
  • 27 篇 national enginee...
  • 27 篇 hubei engineerin...
  • 26 篇 huazhong univers...
  • 24 篇 services computi...
  • 24 篇 cluster and grid...
  • 19 篇 school of softwa...
  • 18 篇 school of inform...
  • 17 篇 school of cyber ...
  • 16 篇 jiangsu key labo...
  • 16 篇 university of ch...
  • 15 篇 huazhong univers...

作者

  • 37 篇 xu xiaolong
  • 29 篇 jin hai
  • 25 篇 xiaolong xu
  • 20 篇 shen linlin
  • 20 篇 hai jin
  • 19 篇 hu shengshan
  • 18 篇 yang yang
  • 17 篇 huang qingming
  • 17 篇 zhou pan
  • 16 篇 wang guoyin
  • 16 篇 xu qianqian
  • 15 篇 zhang leo yu
  • 14 篇 ai bo
  • 14 篇 li minghui
  • 13 篇 zhang zhe
  • 12 篇 zhou ziqi
  • 11 篇 liu jun
  • 11 篇 yang zhiyong
  • 11 篇 fu chong
  • 11 篇 wang haoyu

语言

  • 959 篇 英文
  • 83 篇 其他
  • 7 篇 中文
检索条件"机构=Key Laboratory of Data and Intelligent System Security"
1050 条 记 录,以下是81-90 订阅
BadToken: Token-level Backdoor Attacks to Multi-modal Large Language Models
arXiv
收藏 引用
arXiv 2025年
作者: Yuan, Zenghui Shi, Jiawen Zhou, Pan Gong, Neil Zhenqiang Sun, Lichao Hubei Key Laboratory of Distributed System Security Hubei Engineering Research Center on Big Data Security School of Cyber Science and Engineering Huazhong University of Science and Technology China Duke University United States Lehigh University United States
Multi-modal large language models (MLLMs) extend large language models (LLMs) to process multi-modal information, enabling them to generate responses to image-text inputs. MLLMs have been incorporated into diverse mul...
来源: 评论
T³Planner: Multi-Phase Planning Across Structure-Constrained Optical, IP, and Routing Topologies
收藏 引用
IEEE Journal on Selected Areas in Communications 2025年 第5期43卷 1823-1839页
作者: Yijun Hao Shusen Yang Fang Li Yifan Zhang Cong Zhao Xuebin Ren Peng Zhao Chenren Xu Shibo Wang National Engineering Laboratory for Big Data Analytics Xi’an Jiaotong University Xi’an China National Engineering Laboratory for Big Data Analytics and the Ministry of Education Key Laboratory for Intelligent Networks and Network Security Xi’an Jiaotong University Xi’an China School of Computer Science Peking University Beijing China Department of Computer Science and Engineering The Chinese University of Hong Kong Hong Kong China National Engineering Laboratory for Big Data Analytics XiÃan Jiaotong University XiÃan China
Network topology planning is an essential multi-phase process to build and jointly optimize the multi-layer network topologies in wide-area networks (WANs). Most existing practices target single-phase/layer planning, ... 详细信息
来源: 评论
Big-Moe: Bypassing Isolated Gating For Generalized Multimodal Face Anti-Spoofing
Big-Moe: Bypassing Isolated Gating For Generalized Multimoda...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Yingjie Ma Zitong Yu Xun Lin Weicheng Xie Linlin Shen College of Computer Science and Software Engineering Shenzhen University Great Bay University National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Guangdong Provincial Key Laboratory of Intelligent Information Processing
In the domain of facial recognition security, multimodal Face Anti-Spoofing (FAS) is essential for countering presentation attacks. However, existing technologies encounter challenges due to modality biases and imbala... 详细信息
来源: 评论
A multi-view graph neural network approach for magnetic resonance imaging-based diagnosis of knee injuries
Cognitive Robotics
收藏 引用
Cognitive Robotics 2025年 5卷 201-210页
作者: Biyong Deng Jiashan Pan Xiaoyu Tang Haitao Fu Shushan Hu School of Artificial Intelligence Hubei University Wuhan 430062 China Department of Orthopedic Surgery Beijing Jishuitan Hospital Guizhou Hospital Guiyang 550014 China Key Laboratory of Intelligent Sensing System and Security (Hubei University) Ministry of Education Wuhan 430062 China
The knee plays a pivotal role in the human anatomy, serving as a cornerstone for support, mobility, shock attenuation, and balance. Currently, magnetic resonance imaging (MRI) remains the preferred method for diagnosi... 详细信息
来源: 评论
Learning with Open-world Noisy data via Class-independent Margin in Dual Representation Space
arXiv
收藏 引用
arXiv 2025年
作者: Pan, Linchao Gao, Can Zhou, Jie Wang, Jinbao College of Computer Science and Software Engineering Shenzhen University China Guangdong Provincial Key Laboratory of Intelligent Information Processing China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University China
Learning with Noisy Labels (LNL) aims to improve the model generalization when facing data with noisy labels, and existing methods generally assume that noisy labels come from known classes, called closed-set noise. H... 详细信息
来源: 评论
Federated Hybrid-Supervised Learning for Universal Medical Image Segmentation
Federated Hybrid-Supervised Learning for Universal Medical I...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Shenhai Zheng Sian Wen Congyu Li Qing Chen Laquan Li College of Computer Science and Technology Chongqing University of Posts and Telecommunications China Key Laboratory of Cyberspace Big Data Intelligent Security Ministry of Education China School of Science Chongqing University of Posts and Telecommunications China
Federated Learning (FL) is an advanced technology that tackles the challenge of blocked data arising from privacy concerns, enabling the training of deep learning models without the need for data sharing. However, FL ... 详细信息
来源: 评论
MAGIC: detecting advanced persistent threats via masked graph representation learning  24
MAGIC: detecting advanced persistent threats via masked grap...
收藏 引用
Proceedings of the 33rd USENIX Conference on security Symposium
作者: Zian Jia Yun Xiong Yuhong Nan Yao Zhang Jinjing Zhao Mi Wen Shanghai Key Laboratory of Data Science School of Computer Science Fudan University China School of Software Engineering Sun Yat-sen University China National Key Laboratory of Science and Technology on Information System Security China Shanghai University of Electric Power China
Advance Persistent Threats (APTs), adopted by most delicate attackers, are becoming increasing common and pose great threat to various enterprises and institutions. data provenance analysis on provenance graphs has em...
来源: 评论
Correlation effects on topological structure in complex network evolution
收藏 引用
Physica A: Statistical Mechanics and its Applications 2025年 671卷
作者: Chen, Xiaojie Qiao, Weile Pan, Guijun School of physics Hubei University Hubei Wuhan430062 China Key Laboratory of Intelligent Sensing System and Security Hubei University Ministry of Education Hubei Wuhan430062 China
Network growth model is an important and popular research topic aimed at uncovering the mechanisms of network formation and evolution. Most growth models focus on two key mechanisms: growth and preferential attachment... 详细信息
来源: 评论
DBSSL: A Scheme to Detect Backdoor Attacks in Self-Supervised Learning Models
收藏 引用
IEEE Transactions on Dependable and Secure Computing 2025年
作者: Huang, Yuxian Yang, Geng Yuan, Dong Yu, Shui Nanjing University of Posts and Telecommunication College of Computer Science and Software China Jiangsu Key Laboratory of Big Data Security and Intelligent Processing China University of Sydney School of Electrical and Information Engineering Australia University of Technology Sydney School of Computer Science Australia
Recently, self-supervised learning has garnered significant attention for its ability to extract high-quality features from unlabeled data. However, existing research indicates that backdoor attacks can pose significa... 详细信息
来源: 评论
Experimental and Modeling Study on Void Fraction Using Thermal Distribution Sensor in Horizontal Annular Flow
收藏 引用
IEEE Sensors Journal 2025年 第10期25卷 17640-17649页
作者: Zhao, Ning Chen, Xiangyi Sun, Mingcong Song, Yajing Fang, Lide Li, Zhibin Hebei University College of Quality and Technical Supervision Hebei Baoding071000 China National and Local Joint Engineering Research Center of Metrology Instrument and System Hebei Baoding071002 China CCIC North China Metrology Company Ltd. Beijing100070 China Chengdu University of Information Technology School of Software Engineering Chengdu610225 China Sichuan University of Arts and Science Dazhou Key Laboratory of Government Data Security Sichuan Dazhou635000 China Xinjiang Technical Institute of Physics and Chemistry Chinese Academy of Sciences Urumqi830011 China
The void fraction is an important parameter to characterize the characteristics of annular flow, which is an important precondition for calculating the flow velocity, average density, pressure gradient, and analyzing ... 详细信息
来源: 评论