咨询与建议

限定检索结果

文献类型

  • 616 篇 会议
  • 469 篇 期刊文献

馆藏范围

  • 1,085 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 731 篇 工学
    • 397 篇 计算机科学与技术...
    • 341 篇 软件工程
    • 195 篇 控制科学与工程
    • 119 篇 电气工程
    • 106 篇 生物医学工程(可授...
    • 98 篇 机械工程
    • 94 篇 生物工程
    • 91 篇 信息与通信工程
    • 86 篇 电子科学与技术(可...
    • 79 篇 光学工程
    • 42 篇 仪器科学与技术
    • 38 篇 化学工程与技术
    • 27 篇 航空宇航科学与技...
    • 25 篇 力学(可授工学、理...
    • 25 篇 动力工程及工程热...
    • 24 篇 交通运输工程
    • 17 篇 材料科学与工程(可...
  • 440 篇 理学
    • 261 篇 数学
    • 103 篇 物理学
    • 99 篇 生物学
    • 82 篇 系统科学
    • 67 篇 统计学(可授理学、...
    • 38 篇 化学
  • 155 篇 管理学
    • 113 篇 管理科学与工程(可...
    • 41 篇 图书情报与档案管...
    • 36 篇 工商管理
  • 70 篇 医学
    • 61 篇 临床医学
    • 46 篇 基础医学(可授医学...
    • 39 篇 药学(可授医学、理...
  • 15 篇 经济学
    • 15 篇 应用经济学
  • 10 篇 农学
  • 9 篇 法学
  • 5 篇 教育学
  • 5 篇 军事学
  • 4 篇 文学
  • 1 篇 哲学
  • 1 篇 艺术学

主题

  • 32 篇 feature extracti...
  • 26 篇 training
  • 20 篇 image segmentati...
  • 18 篇 multi-agent syst...
  • 17 篇 deep learning
  • 17 篇 electroencephalo...
  • 17 篇 machine learning
  • 16 篇 ultrasonic imagi...
  • 15 篇 neural networks
  • 15 篇 semantics
  • 14 篇 object detection
  • 13 篇 computational mo...
  • 13 篇 image processing
  • 12 篇 support vector m...
  • 12 篇 optimization
  • 12 篇 memristors
  • 12 篇 multi agent syst...
  • 11 篇 biomedical imagi...
  • 11 篇 mathematical mod...
  • 11 篇 robustness

机构

  • 81 篇 school of artifi...
  • 56 篇 school of automa...
  • 41 篇 key laboratory o...
  • 40 篇 key laboratory o...
  • 35 篇 key laboratory o...
  • 32 篇 shenzhen huazhon...
  • 26 篇 key laboratory o...
  • 23 篇 key laboratory o...
  • 20 篇 key laboratory o...
  • 20 篇 ministry of educ...
  • 19 篇 key laboratory o...
  • 18 篇 department of co...
  • 17 篇 department of au...
  • 17 篇 institute of ima...
  • 16 篇 key laboratory o...
  • 13 篇 school of artifi...
  • 12 篇 key laboratory o...
  • 12 篇 key laboratory o...
  • 12 篇 key laboratory o...
  • 11 篇 key laboratory o...

作者

  • 61 篇 wu dongrui
  • 48 篇 zeng zhigang
  • 47 篇 zhigang zeng
  • 39 篇 ding mingyue
  • 32 篇 cao zhiguo
  • 32 篇 mingyue ding
  • 26 篇 housheng su
  • 26 篇 xi li
  • 24 篇 su housheng
  • 23 篇 sang nong
  • 20 篇 yongji wang
  • 19 篇 jian huang
  • 18 篇 li xi
  • 18 篇 huang jian
  • 18 篇 li wei
  • 18 篇 wang yongji
  • 17 篇 wang xiaoping
  • 17 篇 peng gang
  • 16 篇 jian liu
  • 16 篇 gao changxin

语言

  • 1,015 篇 英文
  • 47 篇 其他
  • 23 篇 中文
检索条件"机构=Key Laboratory of Education Ministry for Image Processing and Intelligence Control"
1085 条 记 录,以下是521-530 订阅
排序:
NiuEM: A Nested-iterative Unsupervised Learning Model for Single-particle Cryo-EM image processing
NiuEM: A Nested-iterative Unsupervised Learning Model for Si...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Rui Hu Jiaming Cai Wangjie Zheng Yang Yang Hong-Bin Shen Shanghai Jiao Tong University and Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University and Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai China Shanghai Jiao Tong University Shanghai China
Cryo-electron microscopy (cryo-EM) has become a mainstream technology for solving spatial structures of biomacromolecules, while the processing of cryo-EM images is a very challenging task. One of the great challenges... 详细信息
来源: 评论
Tigc-Net: Transformer-Improved Graph Convolution Network for Spatio-Temporal Prediction
SSRN
收藏 引用
SSRN 2022年
作者: Chen, Kai Yang, Chunfeng Zhou, Zhengyuan Liu, Yao Ji, Tianjiao Sun, Weiya Chen, Yang School of Cyber Science and Engineering Southeast University Nanjing210096 China Key Laboratory of Computer Network and Information Integration Southeast University Ministry of Education Nanjing210096 China The College of Software Engineering Southeast University Nanjing210096 China Laboratory of Image Science and Technology The School of Computer Science and Engineering Southeast University Nanjing210096 China Jiangsu Key Laboratory of Molecular and Functional Imaging Department of Radiology Zhongda Hospital Southeast University Nanjing210009 China Jiangsu Provincial Joint International Research Laboratory of Medical Information Processing School of Computer Science and Engineering Southeast University Nanjing210096 China NHC Key Laboratory of Medical Virology and Viral Diseases National Institute for Viral Disease Control and Prevention Chinese Center for Disease Control and Prevention Beijing China Beijing Institute of Tracking and Communication Technology Beijing100094 China
Modeling spatio-temporal sequences is an important topic yet challenging for existing neural networks. Most of the current spatio-temporal sequence prediction methods usually capture features separately in temporal an... 详细信息
来源: 评论
Channel and Trials Selection for Reducing Covariate Shift in EEG-based Brain-Computer Interfaces
Channel and Trials Selection for Reducing Covariate Shift in...
收藏 引用
IEEE International Conference on Systems, Man, and Cybernetics
作者: He He Dongrui Wu Key Laboratory for Image Processing and Intelligent Control Ministry of Education and the School of Artificial Intelligence and Automation Huazhong University of Science and Technology
This paper aims at reducing the calibration effort of EEG-based brain-computer interfaces (BCIs). More specifically, in the context of cross-subject classification, we correct covariate shift of EEG data from differen... 详细信息
来源: 评论
Deep reinforcement learning with a stage incentive mechanism of dense reward for robotic trajectory planning
arXiv
收藏 引用
arXiv 2020年
作者: Peng, Gang Yang, Jin Khyam, Mohammad Omar Key Laboratory of Image Processing and Intelligent Control Ministry of EducationB School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China School of Automation South East University Nanjing China School of Engineering and Technology Central Queensland University Melbourne Australia
To improve the efficiency of deep reinforcement learning (DRL)-based methods for robot manipulator trajectory planning in random working environments, we present three dense reward functions. These rewards differ from... 详细信息
来源: 评论
EEG-Based Brain-Computer Interfaces Are Vulnerable to Backdoor Attacks
Research Square
收藏 引用
Research Square 2021年
作者: Meng, Lubin Huang, Jian Zeng, Zhigang Jiang, Xue Yu, Shan Jung, Tzyy-Ping Lin, Chin-Teng Chavarriaga, Ricardo Wu, Dongrui Ministry of Education Key Laboratory of Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China Brainnetome Center and National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing China La Jolla CA United States Center for Advanced Neurological Engineering Institute of Engineering in Medicine UCSD La Jolla CA United States Centre of Artificial Intelligence Faculty of Engineering and Information Technology University of Technology Sydney Australia ZHAW DataLab Zürich University of Applied Sciences Winterthur8401 Switzerland
Research and development of electroencephalogram (EEG) based brain-computer interfaces (BCIs) have advanced rapidly, partly due to the wide adoption of sophisticated machine learning approaches for decoding the EEG si... 详细信息
来源: 评论
Observer-Based Robust Containment control of Multi-agent Systems With Input Saturation
Observer-Based Robust Containment Control of Multi-agent Sys...
收藏 引用
Chinese control Conference (CCC)
作者: Juan Qian Xiaoling Wang Guo-Ping Jiang Housheng Su College of Automation and College of Artificial Intelligence Nanjing University of Posts and Telecommunications and Jiangsu Engineering Lab for IOT Intelligent Robots(IOTRobot) Nanjing PR China School of Artificial Intelligence and Automation Image Processing and Intelligent Control Key Laboratory of Education Ministry ofChina Huazhong University of Science and Technology Wuhan PR China
In this paper, the robust containment control problem of the leader-following multi-agent systems with input saturation and input additive disturbance is addressed, where the followers can be informed by multiple lead... 详细信息
来源: 评论
Pining control Algorithm for Complex Networks
Pining Control Algorithm for Complex Networks
收藏 引用
第三十八届中国控制会议
作者: Bingjun Wang Hui Liu Jiangnqiao Xu Jiaqi Liu School of Artificial Intelligence and Automation & Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China Huazhong University of Science and Technology
In this paper, we quote the concept of resistance distance for Pinning control, and discuss the relationship between the upper bound of the minimum eigenvalue of the grounded Laplacian Matrix and the resistance distan... 详细信息
来源: 评论
Super Twisting control of Passive Gait Training Exoskeleton Driven by Pneumatic Muscles
Super Twisting Control of Passive Gait Training Exoskeleton ...
收藏 引用
International Symposium on Micromechatronics and Human Science (MHS)
作者: Mengshi Zhang Jian Huang Yu Cao Hai-Tao Zhang Key Laboratory of the Ministry of Education for Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China
Pneumatic Muscles (PMs) - driven exoskeleton has a promising prospect in the field of rehabilitation and assistance, because of the PMs intrinsic features of compliance and high force-to-weight ratio. However, the pre... 详细信息
来源: 评论
Optimize TSK fuzzy systems for regression problems: Mini-batch gradient descent with regularization, droprule, and adabound (MBGD-RDA)
arXiv
收藏 引用
arXiv 2019年
作者: Wu, Dongrui Yuan, Ye Huang, Jian Tan, Yihua Ministry of Education Key Laboratory of Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China
Takagi-Sugeno-Kang (TSK) fuzzy systems are very useful machine learning models for regression problems. However, to our knowledge, there has not existed an efficient and effective training algorithm that ensures their... 详细信息
来源: 评论
Different Set Domain Adaptation for Brain-Computer Interfaces: A Label Alignment Approach
arXiv
收藏 引用
arXiv 2019年
作者: He, He Wu, Dongrui Ministry of Education Key Laboratory of Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China
A brain-computer interface (BCI) system usually needs a long calibration session for each new subject/task to adjust its parameters, which impedes its transition from the laboratory to real-world applications. Domain ... 详细信息
来源: 评论