A transient, six-cylinder diesel engine model for cold test has been developed for analyzing the engine fault through the engine torque curve. The model is based on physically working cycle, thermodynamic theory and d...
详细信息
A transient, six-cylinder diesel engine model for cold test has been developed for analyzing the engine fault through the engine torque curve. The model is based on physically working cycle, thermodynamic theory and dynamics mechanism. The simulation of this model, implemented on Matlab/Simulink, can not only achieve engine faults detection before hot test, but also indicate different causes of engine faults, such as initial phase change, intake valve closing-time delay, and so on. It is shown that the diesel engine model for cold test proves its significance to improving cold test technology.
To control the mobile robot with the surrounding information is the essential method to realize the intelligence and automatic moving. The vision information is the most important way to perceive the environment for t...
详细信息
To control the mobile robot with the surrounding information is the essential method to realize the intelligence and automatic moving. The vision information is the most important way to perceive the environment for the mobile robot. This paper presents an essential camera calibration technique for mobile robot, which is based on Pioneer II experiment platform. The technique includes transformation of coordinates system for vision system, the model and principle of image formation, camera distortion calibration. Because of non-linear distortion of camera, algorithm with optimizing operators is presented to improve calibration precision. We verify the validity and feasibility of the algorithm through experiment.
Several neutrosophic combination rules based on the Dempster-Shafer theory (DST) and Dezert-Smarandache theory (DSmT) are presented in this study. The new information fusing approaches proposed the neutrosophic belief...
详细信息
In this paper, a variant of support vector novelty detection (SVND) with dot product kernels is presented for non-spherical distributed data. Firstly we map the data in input space into a reproducing kernel Hilbert sp...
详细信息
In this paper, a variant of support vector novelty detection (SVND) with dot product kernels is presented for non-spherical distributed data. Firstly we map the data in input space into a reproducing kernel Hilbert space (RKHS) by using kernel trick. Secondly we perform whitening process on the mapped data using kernel principal component analysis (KPCA). Finally, we adopt SVND method to train and test whitened data. Experiments were performed on artificial and real-world data.
Liquid State Machine (LSM) is a newly developed computational model with many interesting properties. It has great advantages of dealing with biologic computing when compared to the traditional computational model. In...
Liquid State Machine (LSM) is a newly developed computational model with many interesting properties. It has great advantages of dealing with biologic computing when compared to the traditional computational model. In this paper, the LSM was used to deal with the direction classification problem of the spike series which were distilled from the neurons in motor cortex of a monkey. In the output layer, a linear regression and back-propagation are employed as the training algorithms. Compare to outcomes of the two algorithms, it is showed that ideal classification results were derived when using BP as the training algorithm.
To overcome the main drawbacks of global minimal for active contour models (L. D. Cohen and Ron Kimmel) that the contour is only extracted partially for low SNR images, Method of boundary extraction based on Schrö...
详细信息
To overcome the main drawbacks of global minimal for active contour models (L. D. Cohen and Ron Kimmel) that the contour is only extracted partially for low SNR images, Method of boundary extraction based on Schrödinger Equation is proposed. Our Method is based on computing the numerical solutions of initial value problem for second order nonlinear Schrödinger equation by using discrete Fourier Transformation. Schrödinger transformation of image is first given. We compute the probability P(b,a) that a particle moves from a point a to another point b according to I-Type Schrödinger transformation of image and obtain boundary of object by using quantum contour model.
In this paper, based on Baldwin effect, an improved clonal selection algorithm, Baldwin clonal selection algorithm, termed as BCSA, is proposed to deal with complex multimodal optimization problems. BCSA evolves and i...
详细信息
In this paper, based on Baldwin effect, an improved clonal selection algorithm, Baldwin clonal selection algorithm, termed as BCSA, is proposed to deal with complex multimodal optimization problems. BCSA evolves and improves antibody population by three operations: clonal proliferation operation, Baldwinian learning operation and clonal selection operation. By introducing Baldwin effect, BCSA can make the most of experience of antibodies, accelerate the convergence, and obtain the global optimization quickly. In experiments, BCSA is tested on four types of functions and compared with the clonal selection algorithm and other optimization methods. Experimental results indicate that BCSA achieves a good performance, and is also an effective and robust technique for optimization.
A method for multi-classifier ensemble of Support Vector Machine ensemble (SVMs) and Kernel Matching Pursuit Ensemble (KMPs) is proposed. Support Vector Machine has advantage in solving classification problem of high ...
详细信息
A method for multi-classifier ensemble of Support Vector Machine ensemble (SVMs) and Kernel Matching Pursuit Ensemble (KMPs) is proposed. Support Vector Machine has advantage in solving classification problem of high dimension and small size dataset, and Kernel Matching Pursuit has almost classified performance and the more sparsely solution as comprised with the SVM. So the SVM and the KMP are mix boosted in this paper, which can decrease generalization errors of the single classifier ensemble and improve ensemble classification accuracy by increasing diversity between ensemble individuals. The experiments show that the proposed method can shorten running time and improve classification accuracy compared with individual SVMs or KMPs.
Support vector machine, a universal method for learning from data, gains its development based on statistical learning theory. It shows many advantages in solving nonlinearly small sample and high dimensional problems...
详细信息
Support vector machine, a universal method for learning from data, gains its development based on statistical learning theory. It shows many advantages in solving nonlinearly small sample and high dimensional problems of pattern recognition. Only a part of samples or support vectors (SVs) plays an important role in the final decision function. But SVs could not be obtained in advance until a quadratic programming is performed. In this paper, we use K-nearest neighbour method to extract a boundary vector set which may contain SVs. The number of the boundary set is smaller than the whole training set. Consequently it reduces the training samples, speeds up the training of support vector machine.
A progressive image compression scheme is investigated using reversible integer discrete cosine transform (RDCT) which is derived from the matrix factorization theory. Previous techniques based on DCT suffer from bad ...
详细信息
A progressive image compression scheme is investigated using reversible integer discrete cosine transform (RDCT) which is derived from the matrix factorization theory. Previous techniques based on DCT suffer from bad performance in lossy image compression compared with wavelet image codec. And lossless compression methods such as IntDCT, I2I-DCT and so on could not compare with JPEG-LS or integer discrete wavelet transform (DWT) based codec. In this paper, lossy to lossless image compression can be implemented by our proposed scheme which consists of RDCT, coefficients reorganization, bit plane encoding, and reversible integer pre- and post-filters. Simulation results show that our method is competitive against JPEG-LS and JPEG2000 in lossless compression. Moreover, our method outperforms JPEG2000 (reversible 5/3 filter) for lossy compression, and the performance is even comparable with JPEG2000 which adopted irreversible 9/7 floating-point filter (9/7F filter).
暂无评论