Based on the huge volumes of user check-in data in LBSNs, users' intrinsic mobility patterns can be well explored, which is fundamental for predicting where a user will visit next given his/her historical check-in...
Based on the huge volumes of user check-in data in LBSNs, users' intrinsic mobility patterns can be well explored, which is fundamental for predicting where a user will visit next given his/her historical check-in records. As there are various types of nodes and interactions in LBSNs, they can be treated as Heterogeneous information Network (HIN) where multiple semantic meta-paths can be extracted. Inspired by the recent success of meta-path context based embedding techniques in HIN, in this paper, we design a deep neural network framework leveraging various meta-path contexts for fine-grained user location prediction. Experimental results based on two real-world LBSN datasets demonstrate the best effectiveness of the proposed approach using various evaluation metrics than others.
暂无评论