咨询与建议

限定检索结果

文献类型

  • 854 篇 会议
  • 123 篇 期刊文献

馆藏范围

  • 977 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 627 篇 工学
    • 335 篇 计算机科学与技术...
    • 331 篇 信息与通信工程
    • 254 篇 软件工程
    • 112 篇 电子科学与技术(可...
    • 95 篇 控制科学与工程
    • 59 篇 光学工程
    • 59 篇 生物工程
    • 55 篇 机械工程
    • 53 篇 仪器科学与技术
    • 53 篇 航空宇航科学与技...
    • 50 篇 电气工程
    • 46 篇 化学工程与技术
    • 31 篇 生物医学工程(可授...
    • 24 篇 建筑学
    • 24 篇 土木工程
    • 20 篇 动力工程及工程热...
    • 18 篇 安全科学与工程
    • 16 篇 交通运输工程
    • 14 篇 环境科学与工程(可...
  • 323 篇 理学
    • 194 篇 数学
    • 65 篇 生物学
    • 58 篇 物理学
    • 50 篇 统计学(可授理学、...
    • 47 篇 化学
    • 21 篇 系统科学
    • 15 篇 大气科学
  • 116 篇 管理学
    • 64 篇 管理科学与工程(可...
    • 55 篇 图书情报与档案管...
    • 20 篇 工商管理
  • 19 篇 医学
    • 15 篇 基础医学(可授医学...
  • 18 篇 农学
  • 11 篇 法学
  • 11 篇 军事学
  • 9 篇 教育学
  • 7 篇 经济学
  • 2 篇 艺术学
  • 1 篇 文学

主题

  • 91 篇 synthetic apertu...
  • 52 篇 feature extracti...
  • 30 篇 training
  • 25 篇 accuracy
  • 23 篇 object detection
  • 22 篇 radar
  • 22 篇 radar imaging
  • 20 篇 image segmentati...
  • 20 篇 convolution
  • 17 篇 semantics
  • 17 篇 field programmab...
  • 15 篇 radar polarimetr...
  • 15 篇 computational mo...
  • 15 篇 target recogniti...
  • 15 篇 convolutional ne...
  • 13 篇 target tracking
  • 13 篇 real-time system...
  • 13 篇 remote sensing
  • 11 篇 support vector m...
  • 11 篇 deep learning

机构

  • 215 篇 beijing key labo...
  • 199 篇 hubei province k...
  • 147 篇 beijing key labo...
  • 140 篇 school of comput...
  • 114 篇 college of compu...
  • 72 篇 hubei province k...
  • 72 篇 radar research l...
  • 64 篇 school of inform...
  • 50 篇 beijing institut...
  • 36 篇 advanced technol...
  • 33 篇 beijing key labo...
  • 25 篇 chongqing innova...
  • 21 篇 radar technology...
  • 19 篇 wuhan university...
  • 19 篇 radar research l...
  • 17 篇 hubei key labora...
  • 17 篇 beijing key labo...
  • 17 篇 school of electr...
  • 16 篇 school of comput...
  • 15 篇 hubei province k...

作者

  • 52 篇 ding zegang
  • 40 篇 chen he
  • 39 篇 he chen
  • 35 篇 chen liang
  • 33 篇 hu cheng
  • 30 篇 wang yanhua
  • 28 篇 liang chen
  • 26 篇 xie yizhuang
  • 26 篇 zegang ding
  • 25 篇 li yang
  • 25 篇 zeng tao
  • 24 篇 cheng hu
  • 24 篇 tao zeng
  • 22 篇 xiaolong zhang
  • 22 篇 linbo tang
  • 21 篇 zhang xiaolong
  • 21 篇 tang linbo
  • 20 篇 wang rui
  • 19 篇 teng long
  • 19 篇 liu jun

语言

  • 928 篇 英文
  • 41 篇 其他
  • 8 篇 中文
检索条件"机构=Key Laboratory of Embedded Real-Time Information Processing Technology"
977 条 记 录,以下是461-470 订阅
排序:
Multi-scale object detection by bottom-up feature pyramid network
Multi-scale object detection by bottom-up feature pyramid ne...
收藏 引用
IET International Radar Conference 2018, IRC 2018
作者: Boya, Zhao Baojun, Zhao Linbo, Tang Chen, Wu Radar Research Lab School of Information and Electronics Beijing Institute of Technology Beijing100081 China Beijing Key Laboratory of Embedded Real-Time Information Processing Technology Beijing Institute of Technology Beijing100081 China
The deep neural networks has been developed fast and shown great successes in many significant fields, such as smart surveillance, self-driving and face recognition. The detection of the object with multi-scale and mu... 详细信息
来源: 评论
Robust knowledge-aided sparse recovery STAP method for non-homogeneity clutter suppression
Robust knowledge-aided sparse recovery STAP method for non-h...
收藏 引用
IET International Radar Conference 2018, IRC 2018
作者: Peng, Hao Sun, Yuze Yang, Xiaopeng Yang, Jian Beijing China Department of Electronic Engineering Tsinghua University Beijing China Beijing Key Laboratory of Embedded Real-time Information Processing Technology School of Information and Electronic Beijing Institute of Technology Beijing China
Conventional space-time adaptive processing (STAP) methods would suffer severely performance loss in the complex clutter environment of an airborne-phased array radar, especially when the estimated clutter covariance ... 详细信息
来源: 评论
Radar data simulation using deep generative networks
Radar data simulation using deep generative networks
收藏 引用
IET International Radar Conference 2018, IRC 2018
作者: Song, Yiheng Wang, Yanhua Li, Yang Radar Research Lab School of Information and Electronics Beijing Institute of Technology Beijing100081 China Beijing Key Laboratory of Embedded Real-Time Information Processing Technology Beijing Institute of Technology Beijing100081 China
Due to the high cost of real experiments, radar data simulation plays an important role in radar applications. However, the accuracy and the calculation speed of existing simulation methods is limited by the model err... 详细信息
来源: 评论
SAR Parameter Estimation Method for Rectangle Plane Based on information Geometry
SAR Parameter Estimation Method for Rectangle Plane Based on...
收藏 引用
Signal, information and Data processing (ICSIDP), IEEE International Conference on
作者: Yuhan Wen Xinliang Chen Yangkai Wei Yujie Fan Tao Zeng Zegang Ding Beijing Key Laboratory of Embedded Real-time Information Processing Technology Beijing China
After establishing scattering models, the traditional synthetic aperture radar (SAR) parameter estimation methods usually utilize vanilla gradients to estimate target parameters from SAR echoes or images. However, the... 详细信息
来源: 评论
Research on Infrared And Vsisible Image Fusion System
Research on Infrared And Vsisible Image Fusion System
收藏 引用
Signal, information and Data processing (ICSIDP), IEEE International Conference on
作者: Xinxin He Linbo Tang Chen Wu Beijing Key Laboratory of Embedded Real-time Information Processing Technology Beijing China
Infrared and visible image fusion is an important branch of image fusion technology. By combining the image information of two different bands, the human eye or machine can detect the target more comprehensively, quic...
来源: 评论
High-efficiency scene classification based on deep compressed-domain feature
High-efficiency scene classification based on deep compresse...
收藏 引用
IET International Radar Conference 2018, IRC 2018
作者: Li, Cheng Zhao, Baojun Zhao, Boya Wang, Wenzheng Duan, Chenhui Radar Research Lab School of Information and Electronics Beijing Institute of Technology Beijing100081 China Beijing Key laboratory of Embedded Real-time Information Processing Technology Beijing Institute of technology Beijing100081 China
Remote sensing image (RSI) scene classification has become a more and more fundamental issue in satellite and UAV time-sensitive applications. However, as the volume and velocity of RSIs are undergoing an explosive gr... 详细信息
来源: 评论
Spaceborne synthetic aperture radar imaging mapping methodology based on FPGA-DSP hybrid heterogeneous architecture
Spaceborne synthetic aperture radar imaging mapping methodol...
收藏 引用
IET International Radar Conference 2018, IRC 2018
作者: Yu, Wenyue Xie, Yizhuang Li, Bingyi Chen, He Liu, Xiaoning Beijing Key Laboratory of Embedded Real-time Information Processing Technology Beijing Institute of Technology Beijing100081 China DFH Satellite Co. Ltd. Beijing100081 China
With the development of synthetic aperture radar (SAR) technologies in recent years, the huge amount of remote sensing data bring challenges for high-speed transmission and real-time processing. The general platform w... 详细信息
来源: 评论
Parameter estimation of G0 distribution based on improved recursive expectation-maximisation method for clutter modelling
Parameter estimation of G0 distribution based on improved re...
收藏 引用
IET International Radar Conference 2018, IRC 2018
作者: Lu, Jiaxin Sun, Yuze Zhuo, Bangsheng Yang, Xiaopeng Beijing Key Laboratory of Embedded Real-time Information Processing Technology School of Information and Electronics Beijing Institute of Technology Beijing100081 China Department of Electronic Engineering Tsinghua University Beijing100084 China
Modelling and simulation of clutter are important in radar signal processing, the G0 distribution is generally adopted to simulate the ground clutter in radar echoes. In order to improve the modelling accuracy of clut... 详细信息
来源: 评论
Small vehicles detection based on UAV
Small vehicles detection based on UAV
收藏 引用
IET International Radar Conference 2018, IRC 2018
作者: Chen, Wu Baojun, Zhao Linbo, Tang Boya, Zhao Radar Research Lab School of Information and Electronics Beijing Institute of Technology Beijing100081 China Beijing Key Laboratory of Embedded Real-time Information Processing Technology Beijing Institute of Technology Beijing100081 China
In recent years, with the development of deep neural networks, object detection has been widely used in many fields such as video surveillance, face recognition, and unmanned aerial vehicles (UAVs). However, small obj... 详细信息
来源: 评论
The Verification System of Sliding Spotlight Mode SAR Imaging based on SoPC
The Verification System of Sliding Spotlight Mode SAR Imagin...
收藏 引用
2019 IEEE International Conference on Signal, information and Data processing, ICSIDP 2019
作者: Hu, Shankang Xie, Yizhuang Lian, Jie Li, Bingyi Beijing Institute of Remote Sensing Equipmentt BeiJing China Beijing Key Laboratory of Embedded Real-Time Information Processing Technology Beijing Institute of Technology Beijing China Beijing Institute of Radio Metrology and Measurement Beijing China
Aiming at the application background of sliding spotlight mode Synthetic Aperture Radar (SAR) imaging processing, this paper builds a System-on-a-Programmable-Chip-based (SoPC-based) sliding spotlight mode SAR imaging... 详细信息
来源: 评论