咨询与建议

限定检索结果

文献类型

  • 1,716 篇 会议
  • 1,015 篇 期刊文献

馆藏范围

  • 2,731 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,751 篇 工学
    • 972 篇 计算机科学与技术...
    • 855 篇 软件工程
    • 457 篇 控制科学与工程
    • 329 篇 信息与通信工程
    • 244 篇 生物工程
    • 234 篇 电气工程
    • 221 篇 机械工程
    • 194 篇 生物医学工程(可授...
    • 192 篇 电子科学与技术(可...
    • 166 篇 光学工程
    • 97 篇 化学工程与技术
    • 89 篇 仪器科学与技术
    • 75 篇 材料科学与工程(可...
    • 68 篇 交通运输工程
    • 60 篇 动力工程及工程热...
    • 45 篇 力学(可授工学、理...
    • 39 篇 安全科学与工程
    • 38 篇 航空宇航科学与技...
  • 1,075 篇 理学
    • 590 篇 数学
    • 276 篇 生物学
    • 272 篇 物理学
    • 179 篇 系统科学
    • 162 篇 统计学(可授理学、...
    • 94 篇 化学
  • 389 篇 管理学
    • 257 篇 管理科学与工程(可...
    • 137 篇 图书情报与档案管...
    • 69 篇 工商管理
  • 128 篇 医学
    • 107 篇 临床医学
    • 85 篇 基础医学(可授医学...
    • 70 篇 药学(可授医学、理...
  • 44 篇 法学
  • 32 篇 农学
  • 25 篇 经济学
  • 19 篇 教育学
  • 10 篇 军事学
  • 8 篇 文学
  • 3 篇 艺术学
  • 2 篇 哲学

主题

  • 101 篇 feature extracti...
  • 66 篇 training
  • 56 篇 semantics
  • 51 篇 computational mo...
  • 47 篇 image segmentati...
  • 43 篇 object detection
  • 39 篇 convolution
  • 38 篇 optimization
  • 37 篇 robustness
  • 36 篇 deep learning
  • 36 篇 accuracy
  • 34 篇 machine learning
  • 31 篇 stability analys...
  • 31 篇 predictive model...
  • 31 篇 mathematical mod...
  • 30 篇 neural networks
  • 29 篇 image processing
  • 28 篇 support vector m...
  • 28 篇 simulation
  • 27 篇 control systems

机构

  • 121 篇 fujian provincia...
  • 113 篇 department of au...
  • 113 篇 shanghai enginee...
  • 111 篇 key laboratory o...
  • 82 篇 school of artifi...
  • 69 篇 key laboratory o...
  • 57 篇 school of automa...
  • 53 篇 fujian provincia...
  • 52 篇 shaanxi key labo...
  • 51 篇 key laboratory o...
  • 48 篇 key laboratory o...
  • 41 篇 key laboratory o...
  • 40 篇 key laboratory o...
  • 37 篇 shaanxi key labo...
  • 35 篇 key laboratory o...
  • 34 篇 shenzhen huazhon...
  • 30 篇 key laboratory o...
  • 27 篇 department of co...
  • 26 篇 shaanxi key labo...
  • 26 篇 alibaba group

作者

  • 72 篇 li zuoyong
  • 65 篇 wu dongrui
  • 62 篇 sang nong
  • 59 篇 zhang fuquan
  • 53 篇 gao changxin
  • 50 篇 zeng zhigang
  • 47 篇 jiao licheng
  • 46 篇 zhigang zeng
  • 42 篇 jian huang
  • 37 篇 pan linqiang
  • 36 篇 yongji wang
  • 35 篇 huang jian
  • 34 篇 zuoyong li
  • 33 篇 cao zhiguo
  • 32 篇 licheng jiao
  • 31 篇 wang hesheng
  • 30 篇 hai-tao zhang
  • 30 篇 guan xinping
  • 29 篇 ding liu
  • 29 篇 wang yongji

语言

  • 2,564 篇 英文
  • 110 篇 其他
  • 58 篇 中文
检索条件"机构=Key Laboratory of Image Information Processing and Intelligent Control"
2731 条 记 录,以下是1191-1200 订阅
排序:
Named Entity Recognition in Chinese Judicial Domain Based on Self-attention mechanism and IDCNN  8
Named Entity Recognition in Chinese Judicial Domain Based on...
收藏 引用
8th International Conference on Digital Home, ICDH 2020
作者: Huang, Wenming Zhang, Juan Xiao, Yannan Han, Zheng Deng, Zhenrong Guilin University of Electronic Technology School of Computer Science and Information Security Guilin China Key Laboratory of Intelligent Processing of Computer Image and Graphics Guilin China Guilin Bank Guilin China
Chinese named entity recognition (CNER) in the judicial domain is an important basic task for intelligent analysis and processing of massive documents. This domain entity has more complicated structure than the common... 详细信息
来源: 评论
Autocorrelation Invariance Property of Chaos for Wireless Communication
arXiv
收藏 引用
arXiv 2022年
作者: Yin, Hui-Ping Ren, Hai-Peng Grebogi, Celso Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing Xi'an University of Technology Xi'An710048 China Institute for Complex Systems and Mathematical Biology University of Aberdeen AB24 3UE United Kingdom
A new feature of the chaotic signal generated by chaotic shape-forming filter (CSF) is uncovered in this work. We find that, the autocorrelation function (ACF) of the transmitting signal generated by CSF keeps the sam... 详细信息
来源: 评论
Optimizing Neural Network image Classification with Fractional Order Gradient Methods
SSRN
收藏 引用
SSRN 2023年
作者: Zhao, Haiming Chen, Jiejie Jiang, Ping Zeng, Zhigang Fan, Rui Yang, Honggang School of Computer and Information Engineering Hubei Normal University Huangshi435000 China School of Automation Wuhan University of Technology Wuhan430000 China School of Computer Hubei PolyTechnic University Huangshi435000 China Faculty of Artificial Intelligence Education Central China Normal University Wuhan430000 China School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan430000 China Key Laboratory of Image Information Processing and Intelligent Control Ministry of Education of China Wuhan430000 China
As deep learning technology increasingly permeates various fields, the significance of optimization algorithms in neural network training has become more prominent. Typically, the training of deep learning networks re... 详细信息
来源: 评论
Residual 3D Scene Flow Learning with Context-Aware Feature Extraction
arXiv
收藏 引用
arXiv 2021年
作者: Wang, Guangming Hu, Yunzhe Wu, Xinrui Wang, Hesheng Department of Automation Key Laboratory of System Control Information Processing of Ministry of Education Key Laboratory of Marine Intelligent Equipment and System Ministry of Education Shanghai Engineering Research Center of Intelligent Control and Management Shanghai Jiao Tong University Shanghai200240 China
Scene flow estimation is the task to predict the point-wise or pixel-wise 3D displacement vector between two consecutive frames of point clouds or images, which has important application in fields such as service robo... 详细信息
来源: 评论
Topology Inference for Networked Dynamical Systems: A Causality and Correlation Perspective
Topology Inference for Networked Dynamical Systems: A Causal...
收藏 引用
IEEE Conference on Decision and control
作者: Yushan Li Jianping He Shanghai Engineering Research Center of Intelligent Control and Management Shanghai Jiao Tong University the Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai China
Networked dynamical systems (NDSs) have gained considerable attention in recent years, where the networked agents cooperate to accomplish the common task through the interaction topology. In this paper, we focus on th... 详细信息
来源: 评论
intelligent intersection scheduling based on vehicle traffic priority
Intelligent intersection scheduling based on vehicle traffic...
收藏 引用
第40届中国控制会议
作者: Zhengxin Ruan Sicong Chen Yuanlong Li Liangren Shi Department of Automation Shanghai Jiao Tong University Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai Engineering Research Center of Intelligent Control and Management
This paper proposes an intelligent intersection management method based on the vehicle dynamic priority. By the information interaction between the autonomous vehicles(AVs) and the infrastructure equipment, the vehi... 详细信息
来源: 评论
An Accelerated Gossip-Based Distributed Gradient Method
An Accelerated Gossip-Based Distributed Gradient Method
收藏 引用
第40届中国控制会议
作者: Xiaoxing Ren Dewei Li Yugeng Xi Haibin Shao Department of Automation Shanghai Jiao Tong UniversityKey Laboratory of System Control and Information ProcessingMinistry of Education of ChinaShanghai Engineering Research Center of Intelligent Control and Management
This paper studies distributed optimization over the multi-agent network. We develop and analyze a novel accelerated distributed gradient descent method, termed as G-DGDlm, for gossip communication protocol. G-DGDlm u... 详细信息
来源: 评论
Bearing-only Formation control of Nonholonomic Agents with Unknown Dynamic Leaders
Bearing-only Formation Control of Nonholonomic Agents with U...
收藏 引用
Chinese Automation Congress (CAC)
作者: Haifan Su Ziwen Yang Shanying Zhu Cailian Chen Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai Engineering Research Center of Intelligent Control and Management Shanghai Jiao Tong University Shanghai China
In this paper, the problem of bearing-only formation tracking control of multiple nonholonomic agents is studied. A leader-follower structure is adopted, where the leaders are moving at an unknown constant linear velo... 详细信息
来源: 评论
Exploiting Distilled Learning for Deep Siamese Tracking
Exploiting Distilled Learning for Deep Siamese Tracking
收藏 引用
International Conference on Pattern Recognition
作者: Chengxin Liu Zhiguo Cao Wei Li Yang Xiao Shuaiyuan Du Angfan Zhu Key Laboratory of Image Processing and Intelligent Control Ministry of Education School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China Queen Mary University of London
Existing deep siamese trackers are typically built on off-the-shelf CNN models for feature learning, with the demand for huge power consumption and memory storage. This limits current deep siamese trackers to be carri... 详细信息
来源: 评论
Bearing-based Formation Tracking of Nonholonomic Agents in the Leader’s Local Frame
Bearing-based Formation Tracking of Nonholonomic Agents in t...
收藏 引用
Chinese Automation Congress (CAC)
作者: Ke Lv Ziwen Yang Shanying Zhu Lin Wang Shanghai Engineering Research Center of Intelligent Control and Management Shanghai Jiao Tong University Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai China
This paper investigates the formation tracking control problem of nonholonomic agents in the leader’s local frame, based on bearing measurements. Most of existing works on formation tracking are aimed at tracking a g... 详细信息
来源: 评论